Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Electrophoresis ; 44(23): 1899-1906, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37736676

ABSTRACT

The temperature is often a critical factor affecting the diffusion of nanoparticles in complex physiological media, but its specific effects are still to be fully understood. Here, we constructed a temperature-regulated model of semidilute polymer solution and experimentally investigated the temperature-mediated diffusion of nanoparticles using the particle tracking method. By examining the ensemble-averaged mean square displacements (MSDs), we found that the MSD grows gradually as the temperature increases while the transition time from sublinear to linear stage in MSD decreases. Meanwhile, the temperature-dependent measured diffusivity of the nanoparticles shows an exponential growth. We revealed that these temperature-mediated changes are determined by the composite effect of the macroscale property of polymer solution and the microscale dynamics of polymer chain as well as nanoparticles. Furthermore, the measured non-Gaussian displacement probability distributions were found to exhibit non-Gaussian fat tails, and the tailed distribution is enhanced as the temperature increases. The non-Gaussianity was calculated and found to vary in the same trend with the tailed distribution, suggesting the occurrence of hopping events. This temperature-mediated non-Gaussian feature validates the recent theory of thermally induced activated hopping. Our results highlight the temperature-mediated changes in diffusive transport of nanoparticles in polymer solutions and may provide the possible strategy to improve drug delivery in physiological media.


Subject(s)
Nanoparticles , Polymers , Temperature , Diffusion , Drug Delivery Systems
2.
Electrophoresis ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909658

ABSTRACT

Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.

3.
Electrophoresis ; 43(21-22): 2195-2205, 2022 11.
Article in English | MEDLINE | ID: mdl-35899363

ABSTRACT

There as an urgent need to quantify the endothelial wound-healing process in response to fluid shear stress to improve the biological and clinical understanding of healing mechanisms, which is of great importance for preventing healing impairment, chronic wounds, and postoperative in-stent restenosis. However, current experimental platforms not only require expensive, cumbersome, and powered pumping devices (to, e.g., generate cell scratches and load shear stress stimulation) but also lack quantitative controls for quantitative analysis. In this paper, a passive pump-assisted microfluidic assay is developed to quantify endothelial wound healing in response to fluid shear stress. Our assay consists of passive constant-flow pumps based on the siphon principle and a three-inlet microfluidic chip for cell wound-healing experiments. We also propose a method for quantitatively adjusting cell scratch size by controlling trypsin flow. Both numerical simulations and fluorescein experiments validate the effectiveness of this method. Moreover, we use the designed microfluidic assay to successfully generate cell scratches, load a 12-h shear stress of 5 dyn/cm2 to the cells, and observe wound healing. The results indicate that the healing of a cell scratch is significantly accelerated under the stimulation of shear stress. In conclusion, our passive pump-assisted microfluidic assay shows versatility, applicability, and the potential for quantifying endothelial wound healing in response to fluid shear stress.


Subject(s)
Microfluidics , Wound Healing , Stress, Mechanical , Wound Healing/physiology , Endothelium, Vascular
4.
Soft Matter ; 18(20): 3867-3877, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35531626

ABSTRACT

Flow instability in confined cavities has attracted extensive interest due to its significance in many natural and engineering processes. It also has applications in microfluidic devices for biomedical applications including flow mixing, nanoparticle synthesis, and cell manipulation. The recirculating vortex that characterizes the flow instability is regulated by the fluid rheological properties, cavity geometrical characteristics, and flow conditions, but there is a lack of quantitative understanding of how the vortex evolves as these factors change. Herein, we experimentally study the flow of dilute polymer solutions in confined microfluidic cavities and focus on a quantitative characterization of the vortex evolution. Three typical patterns of vortex evolution are identified in the cavity flow of dilute polymer solutions over a wide range of flow conditions. The geometrical characteristics of the cavity are found to have little effect on the patterns of vortex evolution. The geometry-independent patterns of vortex evolution provide us an intuitive paradigm, from which the interaction and competition among inertial, elastic and shear-thinning effects in these cavity-induced flow instabilities are clarified. These results extend our understanding of the flow instability of complex fluids in confined cavities, and provide useful guidelines for the design of cavity-structured microfluidic devices and their applications.

5.
Electrophoresis ; 42(21-22): 2264-2272, 2021 11.
Article in English | MEDLINE | ID: mdl-34278592

ABSTRACT

Biological cells in vivo typically reside in a dynamic flowing microenvironment with extensive biomechanical and biochemical cues varying in time and space. These dynamic biomechanical and biochemical signals together act to regulate cellular behaviors and functions. Microfluidic technology is an important experimental platform for mimicking extracellular flowing microenvironment in vitro. However, most existing microfluidic chips for generating dynamic shear stress and biochemical signals require expensive, large peripheral pumps and external control systems, unsuitable for being placed inside cell incubators to conduct cell biology experiments. This study has developed a microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Further, based on the lumped-parameter and distributed-parameter models of multiscale fluid dynamics, the oscillatory flow field and the concentration field of biochemical factors has been simulated at the cell culture region within the designed microfluidic chip. Using the constructed experimental system, the feasibility of the designed microfluidic chip has been validated by simulating biochemical factors with red dye. The simulation results demonstrate that dynamic shear stress and biochemical signals with adjustable period and amplitude can be generated at the cell culture chamber within the microfluidic chip. The amplitudes of dynamic shear stress and biochemical signals is proportional to the pressure difference and inversely proportional to the flow resistance, while their periods are correlated positively with the flow capacity and the flow resistance. The experimental results reveal the feasibility of the designed microfluidic chip. Conclusively, the proposed microfluidic generator based on autonomously oscillatory flow can generate dynamic shear stress and biochemical signals without peripheral pumps and external control systems. In addition to reducing the experimental cost, due to the tiny volume, it is beneficial to be integrated into cell incubators for cell biology experiments. Thus, the proposed microfluidic chip provides a novel experimental platform for cell biology investigations.


Subject(s)
Microfluidics , Cell Culture Techniques , Lab-On-A-Chip Devices , Stress, Mechanical
6.
Analyst ; 146(19): 5913-5922, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34570848

ABSTRACT

To reproduce hemodynamic stress microenvironments of endothelial cells in vitro is of vital significance, by which one could exploit the quantitative impact of hemodynamic stresses on endothelial function and seek innovative approaches to prevent circulatory system diseases. Although microfluidic technology has been regarded as an effective method to create physiological microenvironments, a microfluidic system to precisely reproduce physiological arterial hemodynamic stress microenvironments has not been reported yet. In this paper, a novel microfluidic chip consisting of a cell culture chamber with on-chip afterload components designed by the principle of input impedance to mimic the global hemodynamic behaviors is proposed. An external feedback control system is developed to accurately generate the input pressure waveform. A lumped parameter hemodynamic model (LPHM) is built to represent the input impedance to mimic the on-chip global hemodynamic behaviors. Sensitivity analysis of the model parameters is also elaborated. The performance of reproducing physiological blood pressure and wall shear stress is validated by both numerical characterization and flow experiment. Investigation of intracellular calcium ion dynamics in human umbilical vein endothelial cells is finally conducted to demonstrate the biological applicability of the proposed microfluidic system.


Subject(s)
Cell Culture Techniques , Microfluidics , Blood Pressure , Human Umbilical Vein Endothelial Cells , Humans , Shear Strength , Stress, Mechanical
7.
Nano Lett ; 20(5): 3895-3904, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32208707

ABSTRACT

A long-distance hop of diffusive nanoparticles (NPs) in crowded environments was commonly considered unlikely, and its characteristics remain unclear. In this work, we experimentally identify the occurrence of the intermittent hops of large NPs in crowded entangled poly(ethylene oxide) (PEO) solutions, which are attributed to thermally induced activated hopping. We show that the diffusion of NPs in crowded solutions is considered as a superposition of the activated hopping and the reptation of the polymer solution. Such activated hopping becomes significant when either the PEO molecular weight is large enough or the NP size is relatively small. We reveal that the time-dependent non-Gaussianity of the NP diffusion is determined by the competition of the short-time relaxation of a polymer entanglement strand, the activated hopping, and the long-time reptation. We propose an exponential scaling law τhop/τe ∼ exp(d/dt) to characterize the hopping time scale, suggesting a linear dependence of the activated hopping energy barrier on the dimensionless NP size. The activated hopping motion can only be observed between the onset time scale of the short-time relaxation of local entanglement strands and the termination time scale of the long-time relaxation. Our findings on activated hopping provide new insights into long-distance transportation of NPs in crowded biological environments, which is essential to the delivery and targeting of nanomedicines.


Subject(s)
Nanoparticles , Polymers , Diffusion , Molecular Weight , Polyethylene Glycols , Solutions
8.
Electrophoresis ; 41(10-11): 883-890, 2020 06.
Article in English | MEDLINE | ID: mdl-31901145

ABSTRACT

The generation of dynamic biochemical signals in a microfluidic control system is of importance for the study of the interaction between biological cells and their niches. However, most of microfluidic control systems are not able to provide dynamic biochemical signals with high precision and stability due to inherent mechanical vibrations caused by the actuators of the programmable pumps. In this paper, we propose a novel microfluidic feedback control system integrating an external feedback control system with a Y-shaped microfluidic chip with a "Christmas tree" inlet. The Proportional Integral Derivative (PID) controller is implemented to reduce the influence of vibrations. In order to regulate the control parameters efficiently, a mathematical model is built to describe the actuator of the programmable pump, in which a fractional-order model is utilized. Both simulation and experimental studies are carried out, confirming that the microfluidic feedback control system can precisely and stably generate desired dynamic biochemical signals.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Feedback
9.
Electrophoresis ; 41(10-11): 909-916, 2020 06.
Article in English | MEDLINE | ID: mdl-32145034

ABSTRACT

In the present study, we numerically demonstrate an approach for separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. The dual streams are constructed by an intermediate sheath flow, after which the negative magnetophoretic force induced by an array of permanent magnets dominates the separation of diamagnetic particles. A simple and efficient numerical model is developed to calculate the motions of particles under the action of magnetic field and flow field. Effects of the average flow velocity, the ratio of sheath fluid flow to sample fluid flow, the number of the magnet pair as well as the position of magnet pair are investigated. The optimal parametric condition for complete separation is obtained through the parametric analysis, and the separation principle is further elucidated by the force analysis. The separation of smaller micro and sub-micro diamagnetic particles is finally demonstrated. This study provides an insight into the negative magnetophoretic phenomenon and guides the fabrication of feasible, low-cost diagnostic devices for sub-micro particle separation.


Subject(s)
Colloids/chemistry , Magnetics/methods , Magnets/chemistry , Computer Simulation , Microfluidic Analytical Techniques/instrumentation , Particle Size
10.
Anal Chem ; 88(24): 12547-12553, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28193038

ABSTRACT

Viscoelastic microfluidics becomes an efficient and label-free hydrodynamic technology to enrich and separate micrometer-scale particles, including blood cells, circulating tumor cells, and bacteria. However, the manipulation of nanoscale particles by viscoelastic microfluidics remains a major challenge, because the viscoelastic force acting on the smaller particle decreases dramatically. In contrast to the commonly used polymer solutions of high molecular weight, herein we utilize the aqueous solutions of poly(ethylene oxide) (PEO) of low molecular weight with minimized shear thinning but sufficient elastic force for high-quality focusing and separation of various nanoparticles. The focusing efficiencies of 100 nm polystyrene (PS) nanoparticles and λ-DNA molecules are 84% and 85%, respectively, in a double spiral microchannel, without the aid of sheath flows. Furthermore, we demonstrate the size-based viscoelastic separation of two sets of binary mixtures-100/2000 nm PS particles and λ-DNA molecules/blood platelets-all achieving separation efficiencies of >95% in the same device. Our proposal technique would be a promising approach for enrichment/separation of the nanoparticles encountered in applications of analytical chemistry and nanotechnology.

11.
Anal Chem ; 87(12): 6041-8, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25989347

ABSTRACT

Viscoelasticity-induced particle migration has recently received increasing attention due to its ability to obtain high-quality focusing over a wide range of flow rates. However, its application is limited to low throughput regime since the particles can defocus as flow rate increases. Using an engineered carrier medium with constant and low viscosity and strong elasticity, the sample flow rates are improved to be 1 order of magnitude higher than those in existing studies. Utilizing differential focusing of particles of different sizes, here, we present sheathless particle/cell separation in simple straight microchannels that possess excellent parallelizability for further throughput enhancement. The present method can be implemented over a wide range of particle/cell sizes and flow rates. We successfully separate small particles from larger particles, MCF-7 cells from red blood cells (RBCs), and Escherichia coli (E. coli) bacteria from RBCs in different straight microchannels. The proposed method could broaden the applications of viscoelastic microfluidic devices to particle/cell separation due to the enhanced sample throughput and simple channel design.


Subject(s)
Cell Separation , Escherichia coli/isolation & purification , Microfluidic Analytical Techniques , Equipment Design , Erythrocytes/chemistry , Erythrocytes/pathology , Humans , MCF-7 Cells , Microfluidic Analytical Techniques/instrumentation , Particle Size , Surface Properties , Viscosity
12.
Lab Chip ; 24(14): 3412-3421, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38904151

ABSTRACT

Droplets generated through microfluidics serve as a common platform for assembling artificial cells, which are feasibly tailored using microfluidic methodology. The ability of natural cells to undergo shape changes, such as phagocytosis, is a typical characteristic that researchers aim to mimic in artificial cells. However, simulating the deformation behavior of natural cells within droplets is exceptionally challenging. Here, this study reports a pinocytosis-like phenomenon observed in droplets, termed "droplet drinking". When droplets traverse a capillary with constrictions, the shear force from the continuous-phase fluid induces relative motion within the droplets, creating concave regions at the rear. These regions facilitate engulfing of the continuous-phase fluid, resulting in the formation of multiple emulsions. This behavior is influenced by the capillary number, and the size of the ingested droplets is governed by the interfacial tension between the two phases. The production of multicore or multi-shell emulsions can be easily accomplished by making slight adjustments to the constrictions. Furthermore, this method demonstrates the integration of reactants into pre-existing droplets, facilitating biochemical reactions. This study presents a convenient approach for generating complex emulsions and an innovative strategy for studying deformation behavior in droplet-based artificial cells.


Subject(s)
Emulsions , Microfluidic Analytical Techniques , Emulsions/chemistry , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Particle Size , Surface Tension
13.
Front Physiol ; 15: 1348811, 2024.
Article in English | MEDLINE | ID: mdl-38468701

ABSTRACT

Purpose: This research aims to study and compare the effects of moderate-intensity continuous exercise and accumulated exercise with different number of bouts on common carotid arterial stiffness and hemodynamic variables. Methods: Thirty healthy male adults were recruited to complete four trials in a randomized crossover design: no-exercise (CON); continuous exercise (CE, 30-min cycling); accumulated exercise including two or three bouts with 10-min rest intervals (AE15, 2 × 15-min cycling; AE10, 3 × 10-min cycling). The intensity in all the exercise trials was set at 45%-55% heart rate reserve. Blood pressure, right common carotid artery center-line velocity, and arterial inner diameter waveforms were measured at baseline and immediately after exercise (0 min), 10 min, and 20 min. Results: 1) The arterial stiffness index and pressure-strain elastic modulus of the CE and AE15 groups increased significantly at 0 min, arterial diameters decreased in AE15 and AE10, and all indicators recovered at 10 min. 2) The mean blood flow rate and carotid artery center-line velocity increased in all trials at 0 min, and only the mean blood flow rate of AE10 did not recover at 10 min. 3) At 0 min, the blood pressure in all trials was found to be increased, and the wall shear stress and oscillatory shear index of AE10 were different from those in CE and AE15. At 20 min, the blood pressure of AE10 significantly decreased, and the dynamic resistance, pulsatility index, and peripheral resistance of CE partially recovered. Conclusion: There is no significant difference in the acute effects of continuous exercise and accumulated exercise on the arterial stiffness and diameter of the carotid artery. Compared with continuous exercise, accumulated exercise with an increased number of bouts is more effective in increasing cerebral blood supply and blood pressure regulation, and its oscillatory shear index recovers faster. However, the improvement of blood flow resistance in continuous exercise was better than that in accumulated exercise.

14.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677079

ABSTRACT

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Subject(s)
Algorithms , Counterpulsation , Heart Ventricles , Hemodynamics , Models, Cardiovascular , Humans , Counterpulsation/methods , Cardiac Output , Arteries/physiology , Blood Pressure , Computer Simulation , Aorta/physiology , Neural Networks, Computer
15.
Math Biosci ; 359: 109009, 2023 05.
Article in English | MEDLINE | ID: mdl-37086782

ABSTRACT

Vascular endothelial cells (ECs) residing in the innermost layer of blood vessels are exposed to dynamic wall shear stress (WSS) induced by blood flow. The intracellular nitric oxide (NO) and reactive oxygen species (ROS) in ECs modulated by the dynamic WSS play important roles in endothelial functions. Mathematical modeling is a popular methodology for biophysical studies. It can not only explain existing cell experiments, but also reveal the underlying mechanism. However, the previous mathematical models of NO dynamics in ECs are limited to the static WSS induced by constant flow, while arterial blood flow is a periodic pulsatile flow with varying amplitude and frequency at different exercise intensities. In this study, a mathematical model of intracellular NO and ROS dynamics activated by dynamic WSS based on the in vitro cell experiments is developed. With the hypothesis of the viscoelastic body, the Kelvin model is adopted to simulate the mechanosensors on EC. Thus, the NO dynamics activated by dynamic shear stresses induced by constant flow, pulsatile flow, and oscillatory flow are analyzed and compared. Moreover, the roles of ROS have been considered for the first time in the modeling of NO dynamics in ECs based on the analysis of cell experiments. The predictions of the proposed model coincide fairly well with the experimental data when ECs are subjected to exercise-induced WSS. The mechanism is elucidated that WSS induced by moderate-intensity exercise is most favorable to NO production in ECs. This study can provide valuable insights for further study of NO and ROS dynamics in ECs and help develop appropriate exercise regimens for improving endothelial functions.


Subject(s)
Endothelial Cells , Nitric Oxide , Endothelial Cells/physiology , Reactive Oxygen Species , Hemodynamics , Models, Theoretical , Stress, Mechanical
16.
Front Bioeng Biotechnol ; 11: 1118975, 2023.
Article in English | MEDLINE | ID: mdl-36959903

ABSTRACT

Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.

17.
J Phys Chem Lett ; 13(45): 10612-10620, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36350083

ABSTRACT

Diffusion is an essential means of mass transport in porous materials such as hydrogels, which are appealing in various biomedical applications. Herein, we investigate the diffusive motion of nanoparticles (NPs) in porous hydrogels to provide a microscopic view of confined diffusion. Based on the mean square displacement from particle tracking experiments, we elucidate the anomalous diffusion dynamics of the embedded NPs and reveal the heterogeneous pore structures in hydrogels. The results demonstrate that diffusive NPs can intermittently escape from single pores through void connective pathways and exhibit non-Gaussian displacement probability distribution. We simulate this scenario using the Monte Carlo method and clarify the existence of hopping events in porous diffusion. The resultant anomalous diffusion can be fully depicted by combining the hopping mechanism and the hydrodynamic effect. Our results highlight the hopping behavior through the connective pathways and establish a hybrid model to predict NP transport in porous environments.


Subject(s)
Nanoparticles , Porosity , Diffusion , Nanoparticles/chemistry , Hydrogels , Hydrodynamics , Biocompatible Materials
18.
Anal Methods ; 14(46): 4813-4821, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36382629

ABSTRACT

The mechanical properties of single cells have been recognized as biomarkers for identifying individual cells and diagnosing human diseases. Microfluidic devices based on the flow cytometry principle, which are not limited by the vision field of a microscope and can achieve a very high throughput, have been extensively adopted to measure the mechanical properties of single cells. However, these kinds of microfluidic devices usually required pressure-driven pumps with a very low flow rate and high precision. In this study, we developed a high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells. The microfluidic analogue of the Wheatstone bridge not only took advantage of flow cytometry, but also allowed precise control of a very low flow rate through the constricted channel with a higher input flow rate generated by a commercially available pressure-driven pump. Under different input flow rates of the pump, the apparent elastic moduli and the fluidity of osteosarcoma (U-2OS) cells and cervical carcinoma (HeLa) cells were measured by monitoring their dynamic deformations passing through the bridge-channel with different sizes of rectangular constrictions. The results showed that the input flow rate had little effect on measuring the mechanical properties of the cells, while the ratio of cell radius to effective constriction radius was different, i.e., for U-2OS cells it was 1.20 and for HeLa cells it was 1.09. Under this condition compared with predecessors, our statistic results of cell mechanical properties exhibited minimal errors. Furthermore, the cell viability after measurements was kept above 90% that demonstrated the non-destructive property of our proposed method.


Subject(s)
Microfluidic Analytical Techniques , Humans , Microfluidic Analytical Techniques/methods , Microfluidics , HeLa Cells , Lab-On-A-Chip Devices , Flow Cytometry/methods
19.
Biomech Model Mechanobiol ; 20(1): 55-67, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32710185

ABSTRACT

Revealing the mechanisms underlying the intracellular calcium responses in vascular endothelial cells (VECs) induced by mechanical stimuli contributes to a better understanding for vascular diseases, including hypertension, atherosclerosis, and aneurysm. Combining with experimental measurement and Computational Fluid Dynamics simulation, we developed a mechanobiological model to investigate the intracellular [Ca2+] response in a single VEC being squeezed through narrow microfluidic channel. The time-dependent cellular surface tension dynamics was quantified throughout the squeezing process. In our model, the various Ca2+ signaling pathways activated by mechanical stimulation is fully considered. The simulation results of our model exhibited well agreement with our experimental results. By using the model, we theoretically explored the mechanism of the two-peak intracellular [Ca2+] response in single VEC being squeezed through narrow channel and made some testable predictions for guiding experiment in the future.


Subject(s)
Calcium/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Intracellular Space/metabolism , Microfluidics , Adenosine Triphosphate/metabolism , Biomechanical Phenomena , Cell Shape , Computer Simulation , Homeostasis , Humans , Hydrodynamics , Models, Biological , Reproducibility of Results , Surface Tension , TRPV Cation Channels/metabolism , Time Factors
20.
Polymers (Basel) ; 13(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641176

ABSTRACT

Endovascular glue embolization is a minimally invasive technique used to selectively reduce or block the blood supply to specific targeted vessels. Cyanoacrylate glues, mixed with radiopaque iodized oil, have been widely used for vascular embolization owing to their rapid polymerization rate, good penetration ability and low tissue toxicity. Nevertheless, in clinical practice, the selection of the glue-oil proportion and the manual injection process of mixtures are mostly based on empirical knowledge of operators, as the crucial physicochemical effect of polymerization kinetics has rarely been quantitatively investigated. In this study, the Raman spectroscopy is used for studying the polymerization kinetics of n-butyl-cyanoacrylate-based glues mixed with an iodized oil. To simulate the polymerization process during embolization, glue-oil mixtures upon contact with a protein ionic solution mimicking blood plasma are manually constructed and their polymerization kinetics are systematically characterized by Raman spectroscopy. The results demonstrate the feasibility of Raman spectroscopy in the characterization of polymerization kinetics of cyanoacrylate-based embolic glues. The polymerization process of cyanoacrylate-based mixtures consists of a fast polymerization phase followed by a slow phase. The propagation velocity and polymerization time primarily depend on the glue concentrations. The commonly used 50% mixture polymerizes 1 mm over ∼21.8 s, while it takes ∼51 min to extend to 5 mm. The results provide essential information for interventional radiologists to help them understand the polymerization kinetics of embolic glues and thus regulate the polymerization rate for effective embolization.

SELECTION OF CITATIONS
SEARCH DETAIL