Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Biol Toxicol ; 38(6): 1121-1136, 2022 12.
Article in English | MEDLINE | ID: mdl-35348966

ABSTRACT

BACKGROUND: Mitophagy protects against cerebral ischemia/reperfusion (CI/R)-induced neuronal apoptosis via mitochondrial clearance. Although taurine-upregulated gene 1 (lncRNA TUG1) has been proposed to be involved in the neuronal apoptosis evoked by CI/R, its specific role in mitophagy during the progression of CI/R injury remains unknown. METHODS: The CI/R rat model was established using middle cerebral artery occlusion/reperfusion (MCAO/R). Human neuroblastoma cell line SH-SY5Y was subjected to oxygen-glucose deprivation and reoxygenation (OGD/R). Ubiquitination assay, co-immunoprecipitation assay, RNA pull-down, and RNA immunoprecipitation were used to determine the interplay among TUG1, sirtuin 1 (SIRT1), and F-box and WD repeat domain-containing 7 (FBXW7). RESULTS: The upregulation of the TUG1 level and downregulation of the mitophagy were observed in both MCAO/R-treated rats and OGD/R-treated cells. The administration of si-TUG1 (a siRNA directed against TUG1) potentiated mitophagy and suppressed neuronal apoptosis in OGD/R-treated cells. However, the neuroprotective effect of si-TUG1 was reversed by mitophagy inhibitor or SIRT1 knockdown in vitro. Functionally, TUG1 enhanced FBXW7-mediated SIRT1 ubiquitination by upregulating FBXW7 expression. The overexpression of FBXW7 abrogated the si-TUG1-reinforced mitophagy by decreasing SIRT1 expression, thus aggravating neuronal apoptosis in the OGD/R+si-TUG1-treated cells. In rats with MCAO/R, the interference of TUG1 clearly decreased neuronal apoptosis, lessened the infarct volume, and relieved the neurological deficits. CONCLUSION: TUG1 knockdown promotes SIRT1-induced mitophagy by suppressing FBXW7-mediated SIRT1 degradation, thus relieving the neuronal apoptosis induced by CI/R injury. LncRNA TUG1 promotes neuronal apoptosis through inhibition of mitophagy. TUG1 decreased SIRT1 expression by promoting FBXW7-mediated SIRT1 ubiquitination. FBXW7/SIRT1 axis mediated the effect of TUG1 on OGD/R-induced neuronal apoptosis by regulating mitophagy.


Subject(s)
Brain Ischemia , MicroRNAs , Neuroblastoma , RNA, Long Noncoding , Reperfusion Injury , Humans , Rats , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Mitophagy , F-Box-WD Repeat-Containing Protein 7/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Brain Ischemia/genetics , Apoptosis/genetics , Glucose/metabolism , MicroRNAs/genetics
2.
Biochem Biophys Res Commun ; 480(3): 355-361, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27769861

ABSTRACT

Activin A (Act A), a member of the transforming growth factor-beta (TGF-ß), reduces neuronal apoptosis during cerebral ischemia through Act A/Smads signaling pathway. However, little is known about the effect of Act A/Smads pathway on autophagy in neurons. Here, we found that oxygen-glucose deprivation (OGD)-induced autophagy was suppressed by exogenous Act A in a concentration-dependent manner and enhanced by Act A/Smads pathway inhibitor (ActRIIA-Ab) in neuronal PC12 cells. These results indicate that Act A/Smads pathway negatively regulates autophagy in OGD-treated PC12 cells. In addition, we found that c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways are involved in the OGD-induced autophagy. The activation of JNK and p38 MAPK pathways in OGD-treated PC12 cells was suppressed by exogenous Act A and enhanced by ActRIIA-Ab. Together, our results suggest that Act A/Smads signaling pathway negatively regulates OGD-induced autophagy via suppression of JNK and p38 MAPK pathways in neuronal PC12 cells.


Subject(s)
Inhibin-beta Subunits/metabolism , MAP Kinase Signaling System/physiology , Neurons/cytology , Neurons/physiology , Oxygen/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Autophagy/physiology , Cell Line , Cell Survival/physiology , Oxidative Stress/physiology , PC12 Cells , Rats , Smad Proteins/metabolism , Stress, Physiological/physiology
3.
Neurochem Res ; 41(5): 1073-84, 2016 May.
Article in English | MEDLINE | ID: mdl-26721511

ABSTRACT

Activin A (Act A), a member of transforming growth factor-ß superfamily, plays a neuroprotective role in multiple neurological diseases through Act A/Smads signal activation. Traditionally, the up-regulation of Act A gene and extracellular Act A accumulation show the signal activation as a linear pathway. However, one of our discoveries indicated that Act A could lead a loop signaling in ischemic injury. To clarify the characteristic of this loop signaling in a non-pathological state, we up-regulated the expression of Act A, monitored extracellular Act A accumulation and examined the activity of Act A signaling, which was quantified by the expression of phosphorylated Smad3 and the fluorescence intensity of Smad4 in nuclei. The results demonstrated a noncanonical Act A signal loop with self-amplifying property in PC12 cells. Further, it showed self-limiting behavior due to temporary activation and spontaneous attenuation. This periodic behavior of Act A signal loop was found to be regulated by the level of Smad anchor for receptor activation (SARA). Moreover, increased activity of Act A signal loop could promote PC12 cell proliferation and enhance the survival rate of cells to Oxygen-Glucose Deprivation. These practical discoveries will bring new insight on the functional outcome of Act A signaling in neurological diseases by the further understanding: loop signaling.


Subject(s)
Inhibin-beta Subunits/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Proliferation , Cell Survival , Feedback , Glucose/metabolism , Inhibin-beta Subunits/genetics , Oxygen/metabolism , PC12 Cells , Phosphorylation , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Smad3 Protein/metabolism , Smad4 Protein/metabolism
4.
Neuroscience ; 480: 155-166, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34780922

ABSTRACT

P2Y purinoceptor 2 (P2RY2) is involved in the regulation of cell proliferation and apoptosis. The aim of this study was to explore the effects of P2RY2 on cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism. Middle cerebral artery occlusion (MCAO) model in rats and OXYGEN and oxygen-glucose deprivation/reoxygenation (OGD/R) model in PC12 cells were established. P2RY2 expressions in I/R injury model in vitro and in vivo were up-regulated. In the OGD/R group, ROS level, cyto-CytC and mitochondrial fission factors expressions and cell apoptosis were increased, while SOD activity, mito-CytC and mitochondrial fusion factors expressions were decreased. P2RY2 overexpression could reverse these results. Up-regulated P2RY2 expression decreased Yes-associated protein (YAP) phosphorylation level, promote the nuclear translocation of YAP, and inhibit cell apoptosis, which can be reversed by YAP inhibitor verteporfin. The addition of PI3K/AKT inhibitor LY294002 could reverse the decrease of YAP phosphorylation level and cell apoptosis, and the increase of nuclear translocation caused by P2RY2 overexpression. Further in vivo studies validated that interference with P2RY2 increased the cerebral infarction area, decreased AKT expression, enhanced YAP phosphorylation, and inhibited the nuclear translocation of YAP. In conclusion, P2RY2 can alleviate cerebral I/R injury by inhibiting YAP phosphorylation and reducing mitochondrial fission.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Apoptosis , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Mitochondrial Dynamics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Rats , Receptors, Purinergic P2Y2 , Reperfusion Injury/drug therapy
5.
Neural Regen Res ; 12(5): 779-786, 2017 May.
Article in English | MEDLINE | ID: mdl-28616035

ABSTRACT

Activin A, a member of the transforming growth factor-beta superfamily, plays a neuroprotective role in multiple neurological diseases. Endoplasmic reticulum (ER) stress-mediated apoptotic and autophagic cell death is implicated in a wide range of diseases, including cerebral ischemia and neurodegenerative diseases. Thapsigargin was used to induce PC12 cell death, and Activin A was used for intervention. Our results showed that Activin A significantly inhibited morphological changes in thapsigargin-induced apoptotic cells, and the expression of apoptosis-associated proteins [cleaved-caspase-12, C/EBP homologous protein (CHOP) and cleaved-caspase-3] and biomarkers of autophagy (Beclin-1 and light chain 3), and downregulated the expression of thapsigargin-induced ER stress-associated proteins [inositol requiring enzyme-1 (IRE1), tumor necrosis factor receptor-associated factor 2 (TRAF2), apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and p38]. The inhibition of thapsigargin-induced cell death was concentration-dependent. These findings suggest that administration of Activin A protects PC12 cells against ER stress-mediated apoptotic and autophagic cell death by inhibiting the activation of the IRE1-TRAF2-ASK1-JNK/p38 cascade.

SELECTION OF CITATIONS
SEARCH DETAIL