Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Clin Exp Dermatol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641554

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) has been strongly recommended as an excellent alternative treatment for Bowen's disease (BD). However, reported data on 5-aminolevulinic acid-mediated PDT (ALA-PDT) with red light irradiation are limited and the long-term effectiveness remains to be determined, especially in dark-skinned populations. METHODS: Medical records of BD patients who received ALA-PDT with red light irradiation between February 2011 and June 2021 were reviewed and summarized. Univariate and multivariate analyses of clinically relevant variables that may affect treatment outcomes were performed to identify risk predictors. RESULTS: The overall clearance rate of 122 BD lesions was 89.3% with a median follow-up time of 36 months. The correlation between the effectiveness and fluorescence intensity of pre-PDT or PDT sessions was statistically significant after eliminating the interference of confounding factors. All recurrences occurred in the first two years following ALA-PDT. CONCLUSION: ALA-PDT is an effective treatment for BD in the skin of color patients. Well-executed operation and effective pre-treatment are the determinants of effectiveness. Fluorescence intensity of pre-PDT appeared to be a significant predictor of final effectiveness. In addition, two years of follow-up is necessary following ALA-PDT.

2.
Environ Toxicol ; 39(1): 277-288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705238

ABSTRACT

Deoxynivalenol (DON) is a mycotoxin frequently occurring in human and animal food worldwide, which raises increasing public health concerns. In the present study, we used human keratinocytes (HaCaT cells) as an in vitro model to explore the cytotoxic effect of DON. The results showed that the cells exhibited varying degrees of damage, including decreased cell number and viability, cell shrinkage and floating, when treated with 0.125, 0.25, and 0.5 µg/mL DON for 6, 12, and 24 h, respectively. Furthermore, exposure to DON for 24 h significantly increased the lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS), and prominently decreased the superoxide dismutase (SOD) and catalase (CAT) activity. Additionally, DON exposure induced mitochondrial damage and cell apoptosis through reducing mitochondrial membrane potential. Then, we performed RNA-sequencing to investigate the molecular changes in HaCaT cells after DON exposure. The RNA-sequencing results revealed that DON exposure altered the gene expression involved in apoptosis, MAPK signaling pathway, and PI3K/Akt signaling pathway. Moreover, DON exposure significantly decreased the mRNA and protein expression of Bcl-2, and increased the mRNA and protein expression of Bax, Caspase 3 and COX-2, the protein expression of PI3K, and the phosphorylation levels of Akt, ERK, p38, and JNK. Taken together, these findings suggest that DON exposure could induce cell damage, oxidative stress, and apoptosis in HaCaT cells through the activation of PI3K/Akt and MAPK pathways.


Subject(s)
Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Antioxidants/metabolism , Apoptosis , Keratinocytes , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Trichothecenes/adverse effects
3.
Skin Res Technol ; 29(10): e13497, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881057

ABSTRACT

BACKGROUND: Extramammary Paget's disease (EMPD) is a rare cutaneous malignant tumor with a high recurrence rate after surgery. However, the genetic and epigenetic alterations underlying its pathogenesis remain unknown. DNA methylation is an important epigenetic modification involved in many biological processes. METHODS: In this study, enzymatic methyl-sequencing (EM-seq) technique was used to investigate the landscape of genome-wide DNA methylation from three pairs of tumor tissues and adjacent tissues of patients with EMPD. Additionally, we conducted histopathological examinations to assess the expression of fatty acid-binding protein 5 (FABP5) in another three paired samples from EMPD patients. RESULTS: The cluster analysis showed the good quality of the samples. A differential methylation region (DMR) heat map was used to quantitatively characterize genome-wide methylation differences between tumors and controls. Global DNA methylation level is lower in EMPD tissue compared to matched controls, indicating that DNA methylation discriminates between tumor and normal skin. And the top hypomethylation gene on the promoter region in tumor tissues was FABP5 on chromosome 8 with 38.44% decreased median methylation. We next identified the expression of FABP5 in paired tumors and adjacent tissues in three additional patients with EMPD. Immunofluorescence results showed FABP5 highly expressed in tumor tissues and co-located with CK7, CK20 and EMA. GO and KEGG enrichment analysis showed DMR genes on promoter are mainly enriched in the calcium ion transport, GTPase mediated signal transduction, Rap1 signaling pathway and GnRH signaling pathway. CONCLUSION: Taken together, our findings provide the first description of the whole genome methylation map of EMPD and identify FABP5 as a pathogenic target of EMPD.


Subject(s)
Paget Disease, Extramammary , Skin Neoplasms , Humans , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/metabolism , Paget Disease, Extramammary/pathology , Methylation , Skin Neoplasms/pathology , Epigenesis, Genetic/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
4.
Ecotoxicol Environ Saf ; 256: 114901, 2023 May.
Article in English | MEDLINE | ID: mdl-37054475

ABSTRACT

Deoxynivalenol (DON) can affect health and growth performance of pigs, resulting in significant economic losses in swine production. The aim of this study was to investigate the effect of glycyrrhizic acid combined with compound probiotics, i.e. Enterococcus faecalis plus Saccharomyces cerevisiae (GAP) on improving growth performance, intestinal health and its fecal microbiota composition change of piglets challenged with DON. A total of 160 42-day-old weaned piglets (Landrace × Large White) were used and the experimental period was 28 d. The results showed that supplementing GAP in the diet significantly improved the growth performance of piglets challenged with DON and alleviate DON-induced intestinal damage by reducing ALT, AST and LDH concentrations in serum, increasing the morphological parameters of jejunum, and decreasing DON residues in serum, liver and feces. Moreover, GAP could significantly decrease the expressions of inflammation and apoptosis genes and proteins (IL-8, IL-10, TNF-α, COX-2, Bax, Bcl-2 and Caspase 3), and increase the expressions of tight-junction proteins and nutrient transport factor genes and proteins (ZO-1, Occludin, Claudin-1, ASCT2 and PePT1). In addition, it was also found that GAP supplementation could significantly increase the diversity of gut microbiota, maintain microbial flora balance and promote piglet growth by significantly increasing the abundance of beneficial bacterium such as Lactobacillus and reducing the abundance of harmful bacterium such as Clostridium_sensu_stricto_1. In conclusion, GAP addition to piglet diets contaminated with DON could significantly promote the health and growth performance of piglets though alleviating DON-induced hazards. This study provided a theoretical basis for the application of GAP to alleviate DON toxicity for animals.


Subject(s)
Probiotics , Trichothecenes , Swine , Animals , Glycyrrhizic Acid/pharmacology , Intestines
5.
Lasers Surg Med ; 54(5): 804-812, 2022 07.
Article in English | MEDLINE | ID: mdl-35066886

ABSTRACT

BACKGROUND AND OBJECTIVES: Conventional ALA-PDT (C-PDT) has limited efficacy in cutaneous squamous cell carcinoma (cSCC), and there is obvious pain during treatment, which limits its clinical application. We sought to modify photodynamic therapy into a more painless and effective treatment. METHODS: We modified C-PDT by reducing the incubation time of the pro-sensitizer and increasing the light dose; we named this method modified ALA-PDT (M-PDT). We compared the pain response and curative effect between C-PDT and M-PDT in cSCC mouse models. Pain-related proteins were examined by western blot analysis and immunohistochemistry. Tumor progression-associated signaling pathways were analyzed by RNA-seq and western blot analysis. Reactive oxygen species (ROS) generation was measured with a ROS test kit and Microplate reader. RESULTS: M-PDT greatly reduced pain during treatment. Interestingly, when the cSCC tumor volume increased to 150-200 mm3 , M-PDT almost completely eliminated the tumors, while C-PDT did not. The better curative effect of M-PDT might be due to the stronger suppression of the Stat3, Erk1/2, and mTOR signaling pathways. Moreover, flow cytometry demonstrated that M-PDT could recruit CD8+ T cells to inhibit cSCC progression. Further investigation determined that the different mechanisms of C-PDT and M-PDT were related to more ROS generation induced by M-PDT. CONCLUSIONS: Our results suggest that M-PDT, which is more painless and effective than C-PDT, is expected to provide a solution for the treatment of cSCC.


Subject(s)
Carcinoma, Squamous Cell , Photochemotherapy , Skin Neoplasms , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Disease Models, Animal , Mice , Pain/drug therapy , Pain/etiology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Skin Neoplasms/pathology
6.
Anim Biotechnol ; 33(6): 1205-1216, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34010090

ABSTRACT

Genetic analysis of porcine growth and fatness traits is beneficial to the swine industry and provides a reference to understand human obesity. Here, we obtained 29 growth and fatness traits for 473 individuals from a White Duroc × Erhualian F3 intercross population. Basic statistical analyses showed that: (1) Positive correlations between different-stage body weights were detected, the shorter the time interval the stronger the correlation. (2) Strong correlations existed in the paired fatness traits. (3) With the growth of age, the correlation between fatness and body weight was increasing. All pigs were genotyped by Illumina 50 K SNP chips and their whole-genome genotypes were imputed referred to 109 re-sequencing data. We performed common and imputation-based GWASs for these traits. Two genome-wide significant loci on swine chromosome (SSC) 4 and 7 were repeatedly detected. The strongest association (P = 3.24 × 10-19) was detected at 31.96 Mb on SSC7 for leaf fat weight. On this locus, seven major haplotypes were identified, of which two were novel and had an increasing-fatness effect. In the imputation-based GWAS, three new loci were identified. Our findings provide further insights into and enhance our understanding of genetic mechanism of porcine growth and fat deposition.


Subject(s)
Genome-Wide Association Study , Obesity , Quantitative Trait Loci , Animals , Humans , Genotype , Haplotypes/genetics , Phenotype , Quantitative Trait Loci/genetics , Swine/genetics , Obesity/genetics
7.
Genet Sel Evol ; 53(1): 94, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34906088

ABSTRACT

BACKGROUND: Carcass length is very important for body size and meat production for swine, thus understanding the genetic mechanisms that underly this trait is of great significance in genetic improvement programs for pigs. Although many quantitative trait loci (QTL) have been detected in pigs, very few have been fine-mapped to the level of the causal mutations. The aim of this study was to identify potential causal single nucleotide polymorphisms (SNPs) for carcass length by integrating a genome-wide association study (GWAS) and functional assays. RESULTS: Here, we present a GWAS in a commercial Duroc × (Landrace × Yorkshire) (DLY) population that reveals a prominent association signal (P = 4.49E-07) on pig chromosome 17 for carcass length, which was further validated in two other DLY populations. Within the detected 1 Mb region, the BMP2 gene stood out as the most likely causal candidate because of its functions in bone growth and development. Whole-genome gene expression studies showed that the BMP2 gene was differentially expressed in the cartilage tissues of pigs with extreme carcass length. Then, we genotyped an additional 267 SNPs in 500 selected DLY pigs, followed by further whole-genome SNP imputation, combined with deep genome resequencing data on multiple pig breeds. Reassociation analyses using genotyped and imputed SNP data revealed that the rs320706814 SNP, located approximately 123 kb upstream of the BMP2 gene, was the strongest candidate causal mutation, with a large association with carcass length, with a ~ 4.2 cm difference in length across all three DLY populations (N = 1501; P = 3.66E-29). This SNP segregated in all parental lines of the DLY (Duroc, Large White and Landrace) and was also associated with a significant effect on body length in 299 pure Yorkshire pigs (P = 9.2E-4), which indicates that it has a major value for commercial breeding. Functional assays showed that this SNP is likely located within an enhancer and may affect the binding affinity of transcription factors, thereby regulating BMP2 gene expression. CONCLUSIONS: Taken together, these results suggest that the rs320706814 SNP on pig chromosome 17 is a putative causal mutation for carcass length in the widely used DLY pigs and has great value in breeding for body size in pigs.


Subject(s)
Body Size/genetics , Bone Morphogenetic Protein 2/genetics , Quantitative Trait Loci , Swine , Animals , Gene Expression Regulation , Genetic Association Studies/veterinary , Genotype , Mutation , Phenotype , Swine/genetics
8.
J Appl Toxicol ; 40(10): 1362-1372, 2020 10.
Article in English | MEDLINE | ID: mdl-32324309

ABSTRACT

Deoxynivalenol (DON) is a common mycotoxin, which often induces oxidative stress and cytotoxicity in humans and animals. Astilbin (AST), as a natural antioxidant, exhibits multiple pharmacological functions. The aim of this study was to investigate the effects of AST on alleviating DON-induced cytotoxicity in intestinal porcine epithelial cells (IPEC-J2). The results demonstrated that 0.5 µg/mL DON stimulation for 6 hours induced oxidative stress, inflammation and apoptosis in IPEC-J2 cells. AST enhanced the cell viability in a dose- and time-dependent manner. The addition of 20 µg/mL AST significantly increased cell viability, superoxide dismutase and catalase activities, Bcl-2 gene expression and the Bcl-2/Bax ratio (P < .05), and decreased lactate dehydrogenase release, malondialdehyde content and the relative expressions of genes associated with inflammation and apoptosis such as interleukin-6 and -8, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-kappaB, Bax and caspase-3 (P < .05). Simultaneously, zonula occludens-1, claudin-1 and PepT1 gene expressions were upregulated and occludin, ASCT2 and GLUT2 gene expressions were downregulated by the addition of AST, compared with the DON group (P < .05). These results indicated that 20 µg/mL AST could ameliorate oxidative stress, inflammation and apoptosis by enhancing antioxidant enzyme activities and intestinal barrier function, and reducing the expressions of inflammation and apoptosis genes, as well as improve the barrier function and nutrient transport and absorption in DON-induced IPEC-J2 cells.


Subject(s)
Antioxidants/metabolism , Apoptosis/drug effects , Epithelial Cells/drug effects , Flavonols/metabolism , Intestines/drug effects , Mycotoxins/toxicity , Oxidative Stress/drug effects , Trichothecenes/toxicity , Animals , Cells, Cultured/drug effects , Humans , Models, Animal , Swine
9.
Asian-Australas J Anim Sci ; 33(5): 704-711, 2020 May.
Article in English | MEDLINE | ID: mdl-31480184

ABSTRACT

OBJECTIVE: Muscle fiber types, numbers and area are crucial aspects associated with meat production and quality. However, there are few studies of pig muscle fibre traits in terms of the detection power, false discovery rate and confidence interval precision of whole-genome quantitative trait loci (QTL). We had previously performed genome scanning for muscle fibre traits using 183 microsatellites and detected 8 significant QTLs in a White Duroc× Erhualian F2 population. The confidence intervals of these QTLs ranged between 11 and 127 centimorgan (cM), which contained hundreds of genes and hampered the identification of QTLs. A whole-genome sequence imputation of the population was used for fine mapping in this study. METHODS: A whole-genome sequences association study was performed in the F2 population. Genotyping was performed for 1,020 individuals (19 F0, 68 F1, and 933 F2). The whole-genome variants were imputed and 21,624,800 single nucleotide polymorphisms (SNPs) were identified and examined for associations to 11 longissimus dorsi muscle fiber traits. RESULTS: A total of 3,201 significant SNPs comprising 7 novel QTLs showing associations with the relative area of fiber type I (I_RA), the fiber number per square centimeter (FN) and the total fiber number (TFN). Moreover, one QTL on pig chromosome 14 was found to affect both FN and TFN. Furthermore, four plausible candidate genes associated with FN (kinase non-catalytic C-lobe domain containing [KNDC1]), TFN (KNDC1), and I_RA (solute carrier family 36 member 4, contactin associated protein like 5, and glutamate metabotropic receptor 8) were identified. CONCLUSION: An efficient and powerful imputation-based association approach was utilized to identify genes potentially associated with muscle fiber traits. These identified genes and SNPs could be explored to improve meat production and quality via marker-assisted selection in pigs.

10.
J Plant Res ; 132(6): 825-837, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31482250

ABSTRACT

Drought is an important environmental factor that can severely affect plant growth and reproduction. Although many genes related to drought tolerance have been studied in economically important crops, very few genes have been functionally identified in Malus sieversii. In this study, we isolated a new gene based on throughput RNA sequencing analysis and constructed genetic expression vectors and transformed in Arabidopsis thaliana for functional verification. The results showed that MsUspA ectopic expression driven by constitutive (CaMV 35S) promoter gave rise to substantial improvements in ability of transgenic A. thaliana plants to survive under extreme drought conditions. Improved drought resistance mainly depends on more compact cellular structure, longer roots, strong resilience and low-level ROS. Molecular expression analysis showed that MsUspA may be involved in hormone and secondary metabolite synthesis regulation to improve drought resistance.


Subject(s)
Arabidopsis/physiology , Droughts , Gene Expression Regulation, Plant , Heat-Shock Proteins/genetics , Malus/physiology , Plant Proteins/genetics , Stress, Physiological/genetics , Arabidopsis/genetics , Heat-Shock Proteins/metabolism , Malus/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
11.
J Anim Breed Genet ; 136(3): 217-228, 2019 May.
Article in English | MEDLINE | ID: mdl-30869175

ABSTRACT

The average daily gain (ADG) and body weight (BW) are very important traits for breeding programs and for the meat production industry, which have attracted many researchers to delineate the genetic architecture behind these traits. In the present study, single- and multi-trait genome-wide association studies (GWAS) were performed between imputed whole-genome sequence data and the traits of the ADG and BW at different stages in a large-scale White Duroc × Erhualian F2 population. A bioinformatics annotation analysis was used to assist in the identification of candidate genes that are associated with these traits. Five and seven genome-wide significant quantitative trait loci (QTLs) were identified by single- and multi-trait GWAS, respectively. Furthermore, more than 40 genome-wide suggestive loci were detected. On the basis of the whole-genome sequence association study and the bioinformatics analysis, NDUFAF6, TNS1 and HMGA1 stood out as the strongest candidate genes. The presented single- and multi-trait GWAS analysis using imputed whole-genome sequence data identified several novel QTLs for pig growth-related traits. Integrating the GWAS with bioinformatics analysis can facilitate the more accurate identification of candidate genes. Higher imputation accuracy, time-saving algorithms, improved models and comprehensive databases will accelerate the identification of causal genes or mutations, which will contribute to genomic selection and pig breeding in the future.


Subject(s)
Genome-Wide Association Study , Genomics , Quantitative Trait Loci/genetics , Swine/genetics , Animals , Breeding , Chromosome Mapping , Crosses, Genetic , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics
12.
J Anim Breed Genet ; 136(1): 3-14, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30417949

ABSTRACT

Bamaxiang pig is from Guangxi province in China, characterized by its small body size and two-end black coat colour. It is an important indigenous breed for local pork market and excellent animal model for biomedical research. In this study, we performed genomewide association studies (GWAS) on 43 growth and carcass traits in 315 purebred Bamaxiang pigs based on a 1.4 million SNP array. We observed considerable phenotypic variability in the growth and carcass traits in the Bamaxiang pigs. The corresponding SNP based heritability varied greatly across the 43 traits and ranged from 9.0% to 88%. Through a conditional GWAS, we identified 53 significant associations for 35 traits at p value threshold of 10-6 . Among which, 26 associations on chromosome 3, 7, 14 and X passed a genomewide significance threshold of 5 × 10-8 . The most remarkable loci were at around 30.6 Mb on chromosome 7, which had growth stage-dependent effects on body lengths and cannon circumferences and showed large effects on multiple carcass traits. We discussed HMGA1 NUDT3, EIF2AK1, TMEM132C and AFF2 that near the lead SNP of significant loci as plausible candidate genes for corresponding traits. We also showed that including phenotypic covariate in GWAS can help to reveal additional significant loci for the target traits. The results provide insight into the genetic architecture of growth and carcass traits in Bamaxiang pigs.


Subject(s)
Genetic Loci/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Swine/growth & development , Swine/genetics , Animals , Chromosomes/genetics , Genome-Wide Association Study , Phenotype
13.
Front Immunol ; 15: 1369626, 2024.
Article in English | MEDLINE | ID: mdl-38690273

ABSTRACT

Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Animals , Tumor Microenvironment/immunology , Germinal Center/immunology
14.
Front Oncol ; 14: 1319819, 2024.
Article in English | MEDLINE | ID: mdl-38347841

ABSTRACT

Background: Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy, commonly affecting the external genitalia and perianal area of the elderly with unclear pathogenesis. Metabolomics provides a novel perspective for uncovering the metabolic mechanisms of a verity of cancers. Materials and methods: Here, we explored the metabolome of EMPD using an untargeted strategy. In order to further investigate the potential relationship between metabolites and gene expression, we re-analyzed the gene expression microarray data (GSE117285) using differential expression analysis and functional enrichment analyses. Results: Results showed that a total of 896 metabolites were identified and 87 metabolites including 37 upregulated and 50 downregulated significantly in EMPD were sought out. In the following feature selection analyses, four metabolites, namely, cyclopentyl fentanyl-d5, LPI 17:0, guanosine-3',5'-cyclic monophosphate, kynurenine (KYN, high in EMPD) were identified by both random forest and support vector machine analyses. We then identified 1,079 dysfunctional genes: 646 upregulated and 433 downregulated in EMPD. Specifically, the tryptophan-degrading enzyme including indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) were also increased. Generally, cancers exhibit a high expression of IDO1 and TDO2 to catabolize tryptophan, generating abundant KYN. Moreover, we also noticed the abnormal activation of sustaining proliferative signaling in EMPD. Conclusion: In conclusion, this study was the first to reveal the metabolome profile of EMPD. Our results demonstrate that IDO1/TDO2-initialized KYN metabolic pathway may play a vital role in the development and progression of EMPD, which may serve as a potential therapeutic target for treating EMPD.

15.
Gastroenterol Rep (Oxf) ; 12: goae017, 2024.
Article in English | MEDLINE | ID: mdl-38524186

ABSTRACT

Background: Postoperative recurrence (POR) remains a major challenge for patients with Crohn's disease (CD). Gut microbial dysbiosis has been reported to be involved in the pathogenesis of POR. This study aims to investigate the relationship between fecal microbiome and endoscopic recurrence in patients with CD after ileocolonic resection. Methods: This is a cross-sectional study. Fecal samples were collected from 52 patients with CD after surgical intervention from 6 to 12 months before endoscopic examination. Endoscopic recurrence was defined as Rutgeerts score ≥ i2. The microbiome was analyzed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Results: A total of 52 patients were included and classified into POR (n = 27) and non-POR (n = 25) groups. Compared with the non-POR group, the POR group had a significantly lower community richness (Chao1 index: 106.5 vs 124, P = 0.013) and separated microbial community (P = 0.007 for Adonis, P = 0.032 for Anosim), combined with different distribution of 16 gut microbiotas and decrease of 11 predicted metabolic pathways (P < 0.05). Lactobacillus and Streptococcus were identified to closely correlate to non-POR (P < 0.05) after controlling for confounding factors. Kaplan-Meier analysis indicated that the patients with higher abundance of Streptococcus experienced longer remission periods (P < 0.01), but this was not for Lactobacillus. The predicted ethylmalonyl-coA pathway related to increased amount of succinate was positively correlated with Streptococcus (r > 0.5, P < 0.05). Conclusions: The characteristic alterations of fecal microbiota are associated with postoperative endoscopic recurrence in patients with CD; particularly, high abundance of Streptococcus may be closely related to endoscopic remission.

16.
Biomed Pharmacother ; 170: 116003, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091639

ABSTRACT

Deoxynivalenol (DON) is a common mycotoxic contaminant, frequently found in food and feed, causing a severe threat to human and animal health. Because of the widespread contamination of DON, humans involved in agricultural practices may be directly exposed to DON through the skin route. Chlorogenic acid (CGA) is a phenolic acid, which has anti-inflammatory and antioxidant properties. However, it is still unclear whether CGA can protect against DON-induced skin damage. Here, the effect of CGA on mitigating damage to human keratinocytes (HaCaT) triggered by DON, as well as its underlying mechanisms were investigated. Results demonstrated that DON exposure significantly decreased cell viability, and induced excessive mitochondrial reactive oxygen species (mtROS) generation, mitochondrial damage, oxidative stress, cell apoptosis and pyroptosis. However, CGA pretreatment for 2 h significantly increased cell viability and reversed DON-induced oxidative stress by improving antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), reducing mtROS generation and enhancing mitochondrial function through activating Nrf2/HO-1 pathway. Moreover, CGA significantly increased the Bcl-2 protein expression, decreased the protein expressions of Bax and cleaved Caspase-3, and suppressed the phosphorylated of ERK, JNK, NF-κB. Further experiments revealed that CGA could also inhibit the pyroptosis-related protein expressions including NLRP3, cleaved Caspase-1, GSDMD-N, cleaved IL-1ß and IL-18. In conclusion, our results suggest that CGA could attenuate DON-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2/HO-1 pathway and inhibiting MAPK/NF-κB/NLRP3 pathway. CGA might be a novel promising therapeutic agent for alleviating the dermal damage triggered by DON.


Subject(s)
NF-kappa B , Pyroptosis , Animals , Humans , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Oxidative Stress , Apoptosis , Keratinocytes/metabolism
17.
Int Immunopharmacol ; 129: 111636, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38364746

ABSTRACT

Rosacea is a long-term inflammatory skin disease associated with the dysfunction of vascular and immunological systems. Treatment options for rosacea are difficult to implement. Oroxylin A(OA), a traditional Chinese medicine, has anti-inflammation effects in a variety of inflammatory diseases. However, it is not known that whether OA exerts protective effects against LL-37-induced rosacea. In this study, bioinformatics analyses showed that the mechanisms of rosacea and the pharmacological targets of OA were highly overlapped. Subsequently, it was shown that the administration of OA resulted in a notable amelioration of rosacea-like skin lesions, as evidenced by a reduction in immune cell infiltration, modulation of cytokine production, and inhibition of angiogenesis. Plus, it was shown that OA effectively suppressed the generation of ROS generated by LL-37, as well as the subsequent activation of NF-κB signaling pathway. To explore further, we found that OA inhibited LL-37-induced ROS production via SIRT3-SOD2 signaling pathway in keratinocytes. Based on the aforementioned evidence, it can be inferred that OA exhibits a mitigating effect on the inflammatory response in rosacea by modulating the SIRT3-SOD2-NF-κB signaling pathway.


Subject(s)
Dermatitis , Flavonoids , Rosacea , Sirtuin 3 , Humans , NF-kappa B/metabolism , Sirtuin 3/metabolism , Reactive Oxygen Species/metabolism , Rosacea/drug therapy , Signal Transduction , Inflammation/drug therapy
18.
Photodiagnosis Photodyn Ther ; 48: 104238, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848883

ABSTRACT

BACKGROUND: Acne vulgaris is a species-specific human disease. To date, there has been no established human sebocyte cell line of Asian origin. Our previous study has demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of acne vulgaris, primarily attributed to its cytotoxic properties; however, its regulatory mechanism remains largely unknown. OBJECTIVES: To establish an immortalized human sebocyte cell line derived from Chinese population and investigate the underlying mechanism of ALA-PDT. METHODS: Human primary sebocytes were transfected with the human tert gene (h­tert). The biological characteristics, including cell proliferation, cell markers, and sebum secretion function, were compared between primary sebocytes and the immortalized sebocytes (XL-i-20). Stimulations such as ALA-PDT, were applied respectively to both primary sebocytes and XL-i-20 cells to assess changes in their cellular functions. The transcriptome differences between primary sebocytes and XL-i-20 sebocytes were investigated using RNA-seq analysis. The XL-i-20 cell line was used to establish a sebaceous gland (SG) organoid culture, serving as a representative model of SG for the investigation of ALA-PDT. RESULTS: The h­tert immortalized sebocyte cell line exhibited the ability to be consecutively cultured for more than fifty passages. Both primary and immortalized cells expressed sebocyte markers such as epithelial membrane antigens (EMA, or MUC-1), Cytokeratin 7 (CK7) and adipose differentiation-related protein associated antigens (ADRP), and maintained sebum secretion function. The proliferative capacity of XL-i-20 was found to be significantly higher than that of primary sebocytes. The responses of XL-i-20 to ALA-PDT were indistinguishable from those elicited by primary sebocytes. Cell viability and sebum secretion were decreased after ALA-PDT in both two cell lines, and lipid-related proteins (SREBP-1/PPARγ) were down-regulated. The transcriptome data consistently demonstrated upregulation of genes related to inflammatory responses and downregulation of genes involved in lipid metabolism in both cell types following PDT. The analysis of common differential genes of primary sebocytes and XL-i-20 sebocytes post ALA-PDT showed that TNF signaling pathways, MAPK signaling pathways and JAK-STAT signaling pathways were activated. The SG organoids were spherical, which expressed markers of FANS and PLET1. Ki-67 was down-regulated after ALA-PDT. CONCLUSIONS: We have developed an h­tert immortalized sebocyte cell line from an Asian population. The cell line, XL-i-20, maintains the essential characteristics of its parent primary sebocytes. Moreover, XL-i-20 sebocyte exhibited a significant respond to ALA-PDT, demonstrating comparable phenotypic and molecular changes to primary sebocytes. Therefore, XL-i-20 and its derived SG organoid serve as appropriate in vitro models for investigating the efficacy and mechanisms of ALA-PDT in SG-related diseases.

19.
Phytomedicine ; 131: 155752, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833947

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers for which effective drugs are urgently needed. Echinatin, a natural compound extracted from Glycyrrhiza plants, has shown promising antitumour effects. However, the efficacy and the direct target of echinatin in cSCC remain unclear. PURPOSE: This study conducted a systematic investigation of the antitumour effects of echinatin on cSCC and the underlying mechanisms involved. STUDY DESIGN AND METHODS: Three cSCC cell lines, a xenograft model, and a UV-induced cSCC mouse model were used to investigate the potential protective effects of echinatin. The interactions between echinatin and glutathione S-transferase mu3 (GSTM3) and between echinatin and peroxiredoxin-2 (PRDX2) were evaluated by a proteome microarray assay, pull-down LC‒MS/MS analysis, surface plasmon resonance, and molecular docking. The potential mechanisms of GSTM3-mediated echinatin activity were analysed by using western blotting, lentivirus infection and small interfering RNA (siRNA) transfection. RESULTS: In this study, we found that echinatin inhibited the proliferation and migration of cSCC cells but had no cytotoxic effect on primary human keratinocytes. Furthermore, echinatin significantly inhibited tumour growth in vivo. Mechanistically, our data showed that echinatin could directly bind to GSTM3 and PRDX2. Notably, echinatin inhibited GSTM3 and PRDX2 levels by promoting their proteasomal degradation, which led to the disruption of ROS production. We then revealed that echinatin increased mitochondrial ROS production by inhibiting GSTM3. Moreover, echinatin triggered ferroptosis by inhibiting GSTM3-mediated ferroptosis negative regulation (FNR) proteins. In addition, echinatin regulated GSTM3-mediated ROS/MAPK signalling. CONCLUSION: Echinatin has good antitumour effects both in vitro and in vivo. Moreover, our findings indicate that GSTM3 and PRDX2 could function as viable targets of echinatin in cSCC. Consequently, echinatin represents a novel treatment for cSCC through the targeting of GSTM3-mediated ferroptosis.


Subject(s)
Carcinoma, Squamous Cell , Ferroptosis , Glutathione Transferase , Skin Neoplasms , Ferroptosis/drug effects , Animals , Skin Neoplasms/drug therapy , Humans , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Mice , Glutathione Transferase/metabolism , Peroxiredoxins/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Cell Proliferation/drug effects , Molecular Docking Simulation , Mice, Nude , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Keratinocytes/drug effects , Chalcones
20.
Biomed Pharmacother ; 157: 114091, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481403

ABSTRACT

Rosacea is a facial chronic inflammatory skin disease with dysfunction of immune and neurovascular system and treatments for rosacea are challenging. N-3 polyunsaturated fatty acids (PUFAs), one of essential fatty acids, are needed for health maintenance and exert anti-inflammation and immunomodulatory effects in a series of cutaneous diseases such as atopic dermatitis and photoaging through dietary supplementation. However, the role of n-3 PUFAs on rosacea remains to be elucidated. In this study, KEGG enrichment analysis and GO analysis indicated that the biological process and signaling pathways, including chemokine signaling pathway, regulated by n-3 PUFAs highly overlapped with those in the pathogenic biological process of rosacea, especially the erythema telangiectasia type. Next, mice were randomized to fed with a customized n-3 PUFAs diet. We showed that n-3 PUFAs ameliorated skin erythema, inhibited dermal inflammatory cell infiltration (mast cells, neutrophils, and CD4 +T cells) and suppressed elevated pro-inflammatory cytokines in LL37-induced rosacea-like mice. Besides, n-3 PUFAs were also verified to repress angiogenesis in LL37-induced mice skin. Further investigation revealed that n-3 PUFAs attenuated LL37-induced inflammation via TLR2/ MyD88/ NF-κB pathway both in mice and in keratinocytes. In conclusion, our findings underscore that dietary supplementation of n-3 PUFAs have the potential to become an efficient and safe clinical therapeutic candidate for rosacea.


Subject(s)
Fatty Acids, Omega-3 , Rosacea , Animals , Mice , Dietary Supplements , Erythema , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rosacea/chemically induced , Rosacea/drug therapy , Toll-Like Receptor 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL