Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 84(5): 897-909.e4, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38340716

ABSTRACT

RNA polymerase II (RNA Pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome-wide distribution of more persistent backtracking are unknown. Consequently, we developed a method to directly sequence the extruded, "backtracked" 3' RNA. Our data show that RNA Pol II slides backward more than 20 nt in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where RNA Pol II pauses near promoters and intron-exon junctions and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking can potentially affect diverse gene expression programs.


Subject(s)
RNA Polymerase II , RNA , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA/genetics , Transcription, Genetic , DNA-Directed RNA Polymerases/genetics
2.
Nature ; 622(7981): 180-187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37648864

ABSTRACT

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Subject(s)
Anti-Bacterial Agents , Binding Sites , DNA-Directed RNA Polymerases , Escherichia coli , Mutation , Rifampin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , DNA Breaks/drug effects , DNA Replication/drug effects , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Nucleotides/deficiency , Nucleotides/metabolism , Promoter Regions, Genetic , Rifampin/chemistry , Rifampin/metabolism , Rifampin/pharmacology , Time Factors , Transcription, Genetic/drug effects
3.
bioRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38168453

ABSTRACT

RNA polymerase II (pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome wide distribution of more persistent backtracking is unknown. Consequently, we developed a novel method to directly sequence the extruded, "backtracked" 3' RNA. Our data shows that pol II slides backwards more than 20 nucleotides in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where pol II pauses near promoters and intron-exon junctions, and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking has the potential to affect diverse gene expression programs.

4.
Cancer Res ; 81(5): 1240-1251, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33441311

ABSTRACT

Leukemic relapse is believed to be driven by transformed hematopoietic stem cells (HSC) that harbor oncogenic mutations or have lost tumor suppressor function. Recent comprehensive sequencing studies have shown that mutations predicted to activate Ras signaling are highly prevalent in hematologic malignancies and, notably, in refractory and relapsed cases. To better understand what drives this clinical phenomenon, we expressed oncogenic NrasG12D within the hematopoietic system in mice and interrogated its effects on HSC survival. N-RasG12D conferred a survival benefit to HSCs and progenitors following metabolic and genotoxic stress. This effect was limited to HSCs and early progenitors and was independent of autophagy and cell proliferation. N-RasG12D-mediated HSC survival was not affected by inhibition of canonical Ras effectors such as MEK and PI3K. However, inhibition of the noncanonical Ras effector pathway protein kinase C (PKC) ameliorated the protective effects of N-RasG12D. Mechanistically, N-RasG12D lowered levels of reactive oxygen species (ROS), which correlated with reduced mitochondrial membrane potential and ATP levels. Inhibition of PKC restored the levels of ROS to that of control HSCs and abrogated the protective effects granted by N-RasG12D. Thus, N-RasG12D activation within HSCs promotes cell survival through the mitigation of ROS, and targeting this mechanism may represent a viable strategy to induce apoptosis during malignant transformation of HSCs. SIGNIFICANCE: Targeting oncogenic N-Ras-mediated reduction of ROS in hematopoietic stem cells through inhibition of the noncanonical Ras effector PKC may serve as a novel strategy for treatment of leukemia and other Ras-mutated cancers.


Subject(s)
Apoptosis/physiology , Genes, ras/genetics , Hematopoietic Stem Cells/physiology , Oxidative Stress/physiology , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Autophagy/physiology , Cell Survival/genetics , Cells, Cultured , Female , Fluorouracil/adverse effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/radiation effects , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Protein Kinase C/genetics , Protein Kinase C/metabolism , Radiation, Ionizing , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
5.
Nat Cell Biol ; 21(3): 328-337, 2019 03.
Article in English | MEDLINE | ID: mdl-30778220

ABSTRACT

Over their lifetime, long-term haematopoietic stem cells (HSC) are exposed to a variety of stress conditions that they must endure. Many stresses, such as infection/inflammation, reactive oxygen species, nutritional deprivation and hypoxia, activate unfolded protein response signalling, which induces either adaptive changes to resolve the stress or apoptosis to clear the damaged cell. Whether unfolded-protein-response signalling plays any role in HSC regulation remains to be established. Here, we report that the adaptive signalling of the unfolded protein response, IRE1α-XBP1, protects HSCs from endoplasmic reticulum stress-induced apoptosis. IRE1α knockout leads to reduced reconstitution of HSCs. Furthermore, we show that oncogenic N-RasG12D activates IRE1α-XBP1, through MEK-GSK3ß, to promote HSC survival under endoplasmic reticulum stress. Inhibiting IRE1α-XBP1 abolished N-RasG12D-mediated survival under endoplasmic reticulum stress and diminished the competitive advantage of NrasG12D HSCs in transplant recipients. Our studies illuminate how the adaptive endoplasmic reticulum stress response is advantageous in sustaining self-renewal of HSCs and promoting pre-leukaemic clonal dominance.


Subject(s)
Cell Self Renewal/genetics , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/metabolism , Hematopoietic Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/metabolism , Adaptation, Physiological , Animals , Cell Survival/genetics , Endoribonucleases/genetics , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Precancerous Conditions , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , X-Box Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL