Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sensors (Basel) ; 22(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35062470

ABSTRACT

A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25-37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.


Subject(s)
Sleep Apnea Syndromes , Sleep Apnea, Obstructive , Algorithms , Electrocardiography , Humans , Neural Networks, Computer , Polysomnography , Sleep Apnea Syndromes/diagnosis , Sleep Apnea, Obstructive/diagnosis
2.
Sensors (Basel) ; 22(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35161903

ABSTRACT

Globally, the incidence rate for breast cancer ranks first. Treatment for early-stage breast cancer is highly cost effective. Five-year survival rate for stage 0-2 breast cancer exceeds 90%. Screening mammography has been acknowledged as the most reliable way to diagnose breast cancer at an early stage. Taiwan government has been urging women without any symptoms, aged between 45 and 69, to have a screening mammogram bi-yearly. This brings about a large workload for radiologists. In light of this, this paper presents a deep neural network (DNN)-based model as an efficient and reliable tool to assist radiologists with mammographic interpretation. For the first time in the literature, mammograms are completely classified into BI-RADS categories 0, 1, 2, 3, 4A, 4B, 4C and 5. The proposed model was trained using block-based images segmented from a mammogram dataset of our own. A block-based image was applied to the model as an input, and a BI-RADS category was predicted as an output. At the end of this paper, the outperformance of this work is demonstrated by an overall accuracy of 94.22%, an average sensitivity of 95.31%, an average specificity of 99.15% and an area under curve (AUC) of 0.9723. When applied to breast cancer screening for Asian women who are more likely to have dense breasts, this model is expected to give a higher accuracy than others in the literature, since it was trained using mammograms taken from Taiwanese women.


Subject(s)
Breast Neoplasms , Mammography , Aged , Area Under Curve , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer , Female , Humans , Middle Aged , Neural Networks, Computer
3.
Sensors (Basel) ; 20(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722630

ABSTRACT

Many works in recent years have been focused on developing a portable and less expensive system for diagnosing patients with obstructive sleep apnea (OSA), instead of using the inconvenient and expensive polysomnography (PSG). This study proposes a sleep apnea detection system based on a one-dimensional (1D) deep convolutional neural network (CNN) model using the single-lead 1D electrocardiogram (ECG) signals. The proposed CNN model consists of 10 identical CNN-based feature extraction layers, a flattened layer, 4 identical classification layers mainly composed of fully connected networks, and a softmax classification layer. Thirty-five released and thirty-five withheld ECG recordings from the MIT PhysioNet Apnea-ECG Database were applied to train the proposed CNN model and validate its accuracy for the detection of the apnea events. The results show that the proposed model achieves 87.9% accuracy, 92.0% specificity, and 81.1% sensitivity for per-minute apnea detection, and 97.1% accuracy, 100% specificity, and 95.7% sensitivity for per-recording classification. The proposed model improves the accuracy of sleep apnea detection in comparison with several feature-engineering-based and feature-learning-based approaches.


Subject(s)
Sleep Apnea Syndromes , Electrocardiography , Humans , Neural Networks, Computer , Polysomnography , Sleep Apnea Syndromes/diagnosis
4.
ScientificWorldJournal ; 2012: 315797, 2012.
Article in English | MEDLINE | ID: mdl-22577352

ABSTRACT

With the large availability of protein interaction networks and microarray data supported, to identify the linear paths that have biological significance in search of a potential pathway is a challenge issue. We proposed a color-coding method based on the characteristics of biological network topology and applied heuristic search to speed up color-coding method. In the experiments, we tested our methods by applying to two datasets: yeast and human prostate cancer networks and gene expression data set. The comparisons of our method with other existing methods on known yeast MAPK pathways in terms of precision and recall show that we can find maximum number of the proteins and perform comparably well. On the other hand, our method is more efficient than previous ones and detects the paths of length 10 within 40 seconds using CPU Intel 1.73 GHz and 1 GB main memory running under windows operating system.


Subject(s)
Algorithms , Gene Expression Regulation, Fungal , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Protein Interaction Mapping/methods , Protein Interaction Maps , Software , Animals , Color , Computational Biology , Databases, Protein , Fungal Proteins/genetics , Genes, Fungal , Genes, Neoplasm , Humans , Male , Pheromones/metabolism , Protein Array Analysis , Signal Transduction , Yeasts/genetics
5.
BMC Syst Biol ; 6: 5, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22257493

ABSTRACT

BACKGROUND: Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. RESULTS: We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH)-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. CONCLUSIONS: With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.


Subject(s)
Algorithms , Anti-Bacterial Agents/pharmacology , Drug Resistance/physiology , Gene Expression Regulation, Bacterial/genetics , Models, Theoretical , Mycobacterium tuberculosis/drug effects , Search Engine/methods , Computational Biology/methods , Drug Resistance/genetics , Ethionamide , Fatty Acids/metabolism , Humans , Isoniazid , Microarray Analysis , NAD/metabolism , Protein Interaction Maps , SOS Response, Genetics/genetics , SOS Response, Genetics/physiology , Stochastic Processes
6.
BMC Med Genomics ; 2: 70, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20025723

ABSTRACT

BACKGROUND: Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. RESULTS: To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. CONCLUSIONS: We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.


Subject(s)
Gene Regulatory Networks , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Transcription Factors/metabolism , Bayes Theorem , Databases, Genetic , Gene Expression Profiling , Humans , Internet , Male , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL