Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 17(32): e2101428, 2021 08.
Article in English | MEDLINE | ID: mdl-34213824

ABSTRACT

The core@shell structure dimension of the Pd-based nanocrystals deeply impacts their catalytic properties for C1 and C2 alcohol oxidation reactions. However, the precise simultaneous control on the synthesis of core@shell nanocrystals with different shell dimensions is difficult, and most synthesis on Pd-based core@shell nanocatalysts involves the surfactants participation by multiple steps, thus leads to limited catalytic properties. Herein, for the first time, a facile one-step surfactant-free strategy is developed for shell dimension reconstruction of PdAu@Pd core@shell nanocrystals by altering volume ratios of mixed solvents. The Pd-based sunflower-like (SL) and coral grass-like (CGL) nanocrystals are obtained with different 2D hexagonal nanosheet assembles and 3D network shells, respectively. Benefitting from the clean surface shell of 2D ultrathin nanosheets structure, high atom utilization efficiency, and robust electronic effect. The PdAu@Pd SL achieves the ascendant methanol/ethanol/ethylene glycol oxidation reaction (MOR/EOR/EGOR) activities, much higher than Pd/C catalysts, as well as the improved antipoisoning ability. Notably, this one-step construction shell dimension of PdAu@Pd core@shell catalysts not only provide a significant reference for the improvement of surfactant-free synthetic routes, but also shed light on the advanced engineering on shell dimensions in core@shell nanostructures for electrocatalysis and so forth.


Subject(s)
Nanoparticles , Palladium , Catalysis , Ethanol , Solvents
2.
Inorg Chem ; 60(10): 7527-7535, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33909434

ABSTRACT

Photoelectrocatalytic nanomaterials are promising for direct alcohol fuel cells, but the construction of high-efficiency catalysts remains difficult. We herein successfully synthesized three-dimensional (3D) PdM nanosheet assemblies (PdM NSAs, M = Au, Ag, and Cu) through a seed-mediated growth method, which displayed a typical 3D nanoflower morphology assembled from many two-dimensional ultrathin nanosheets. Due to the open 3D structure and the synergistic and electronic effects between Pd and Ag, the optimized PdAg NSAs showed the highest mass activity (9378 mA mg-1) for the ethylene glycol oxidation reaction. More interestingly, when irradiated with visible light, the mass activity increased to 14 590 mA mg-1, 12.1 times higher than that of the commercial Pd/C (1205 mA mg-1). In addition, the as-obtained catalysts also showed better long-term durability than that of the commercial Pd/C under the condition of with or without visible-light illumination. This work highlights the utilization of light energy in designing excellent photoelectrocatalysts to promote the photoelectrocatalytic performance of anode catalysts for fuel cells.

3.
Nanoscale ; 13(42): 17939-17944, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34693950

ABSTRACT

Networked nanowire (NNW)-structured catalysts have attracted extensive attention due to their large surface area and structural stability, which mean that they have excellent catalytic activity and stability and can be used as anode reaction catalysts for use in direct alcohol fuel cells (DAFCs). Herein, a series of networked PdSn nanowires synthesized via a modified polyol strategy are used as efficient DAFCs anode reaction catalysts. The introduction of Sn plays an important role in the improvement of catalytic behavior, in which the existence of Sn promotes the oxidation of intermediates by providing abundant oxyphilic species. Moreover, the generated PdSn NNWs-3 with optimal content show rich grain boundaries and an even NNW structure, which provides more active sites to further improve catalytic performance, so it exhibits excellent activity toward alcohol oxidation. The mass activities of PdSn NNWs-3 toward the ethanol oxidation reaction (EOR) and the methanol oxidation reaction (MOR) are 8105.0 and 3099.5 mA mgPd-1, which are 6.9 and 10.7 times higher than those of Pd/C, respectively. Compared with Pd/C, the PdSn NNWs also display enhanced stability towards the EOR and MOR. This work demonstrates that NNW nanocatalysts indeed exhibit excellent catalytic performance for alcohol oxidation reactions.

4.
Chem Commun (Camb) ; 57(97): 13198-13201, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34816835

ABSTRACT

Herein, we developed a one-pot, surfactant-free approach to obtain a PdPtAu@Pd core@shell catalyst for the photocatalytic methanol oxidation reaction. By virtue of its dimensions, conjunction architecture and robust core@shell construction, 0D@2D PdPtAu@Pd exhibited a superior catalytic performance, with a mass activity 2.3- and 6.7-times higher than that of Pt/C and Pd/C catalysts, respectively.

5.
Nanoscale ; 13(7): 3895-3910, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33576356

ABSTRACT

Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.

6.
J Colloid Interface Sci ; 601: 42-49, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34052725

ABSTRACT

Recently, intensive attention has been attracted to the two-dimensional metal nanosheets, owing to their excellent electrocatalytic performance for direct alcohol fuel cells (DAFCs). Herein, PdRu nanosheets have been synthesized successfully by a facile one-pot method. The rugged nanosheet structure provided plentiful surface active sites to enhance the electrocatalytic activity. Moreover, benefiting from the synergistic effect and improved electronic structure, PdRu NSs exhibited splendid electrocatalytic performance in ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). Specifically, the mass activity of PdRu NSs was 1.72 and 3.69 times over those of Pd NSs and Pd/C catalysts in EGOR. Moreover, PdRu NSs displayed the largest mass activity in GOR, 1.48 and 2.47 times as large as Pd NSs and Pd/C catalysts. The results of stability tests demonstrated that the durability of PdRu NSs was the highest among the obtained catalysts. This work plays a directive role on the in-depth engineering on Pd-based catalysts with nanosheet architectures.


Subject(s)
Ethylene Glycol , Glycerol , Catalysis , Ethanol , Oxidation-Reduction
7.
J Colloid Interface Sci ; 591: 203-210, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33609892

ABSTRACT

Modifying the electronic structure and optimizing the geometric structure can expeditiously tune the electrocatalytic properties of catalysts, resulting in considerably enhanced electrocatalytic performance towards electrocatalytic oxidation of liquid fuels. We herein report a simple synthetic strategy to prepare Bi-doped 3D taraxacum-like Pd nanocages (NCs) composed of porous nanosheets, which possess high surface areas and strong synergistic effects. Notably, a trace of Bi diffuses into the lattice of Pd and increases the electronic effects of the surface of Pd, endowing PdBi-0.5 NCs/C with superior electrocatalytic performance towards ethanol oxidation reaction (EOR). The mass activity and specific activity of PdBi-0.5 NCs/C were 3494.8 mA mgPd-1 and 10.37 mA cm-2, being 4.08- and 4.82- fold enhancements as compared with commercial Pd/C, respectively. Moreover, the highly open porous 3D nanocages structure with rich active sites and defects can also facilitate the mass/electron transfer to favor the EOR kinetics.

8.
J Colloid Interface Sci ; 574: 182-189, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32311540

ABSTRACT

High performance nanomaterial catalysts have attracted great attention on the application for the direct alcohol fuel cell. To improve the catalytic behavior, it is a challenge to modulate the surface structure and morphology of catalysts. We integrated properties of advanced networks nanostructure and core@shell structure to form a series of PdAg@Pd worm-like networks catalysts. Importantly, the composition-optimized Pd76Ag24 WNWs exhibited excellent catalytic performance towards ethanol oxidation reaction compared to that of commercial Pd/C catalysts in alkaline media. The mass activity of Pd76Ag24 WNWs is 3.55 times higher than that of commercial Pd/C catalysts for EOR. Moreover, the Pd76Ag24 WNWs also showed superior stability after 250 successive cycles and kept far higher residual activities than that of the other catalysts. The synthesis of PdAg@Pd worm-like networks catalysts provides a reference to well combine the advantages of core@shell and networks structure to form high performance catalysts application for DEFC.

SELECTION OF CITATIONS
SEARCH DETAIL