Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Antimicrob Agents Chemother ; 67(10): e0042423, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37695304

ABSTRACT

We have previously reported promising in vivo activity of the first-generation 2-aminopyramidine robenidine analogue NCL195 against Gram-positive bacteria (GPB) when administered via the systemic route. In this study, we examined the efficacy of oral treatment with NCL195 (± low-dose colistin) in comparison to oral moxifloxacin in bioluminescent Staphylococcus aureus and Escherichia coli peritonitis-sepsis models. Four oral doses of 50 mg/kg NCL195, commencing immediately post-infection, were administered at 4 h intervals in the S. aureus peritonitis-sepsis model. We used a combination of four oral doses of 50 mg/kg NCL195 and four intraperitoneal doses of colistin at 0.125 mg/kg, 0.25 mg/kg, or 0.5 mg/kg in the E. coli peritonitis-sepsis model. Subsequently, the dose rates of four intraperitoneal doses of colistin were increased to 0.5 mg/kg, 1 mg/kg, or 2 mg/kg at 4 h intervals to treat a colistin-resistant E. coli infection. In the S. aureus infection model, oral treatment of mice with NCL195 resulted in significantly reduced S. aureus infection loads (P < 0.01) and longer survival times (P < 0.001) than vehicle-only treated mice. In the E. coli infection model, co-administration of NCL195 and graded doses of colistin resulted in a dose-dependent significant reduction in colistin-susceptible (P < 0.01) or colistin-resistant (P < 0.05) E. coli loads compared to treatment with colistin alone at similar concentrations. Our results confirm that NCL195 is a potential candidate for further preclinical development as a specific treatment for multidrug-resistant infections, either as a stand-alone antibiotic for GPB or in combination with sub-inhibitory concentrations of colistin for Gram-negative bacteria.


Subject(s)
Bacteremia , Escherichia coli Infections , Peritonitis , Sepsis , Staphylococcal Infections , Mice , Animals , Colistin/pharmacology , Colistin/therapeutic use , Staphylococcus aureus , Escherichia coli , Robenidine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/microbiology , Staphylococcal Infections/drug therapy , Peritonitis/drug therapy , Sepsis/drug therapy , Bacteremia/drug therapy , Administration, Oral , Microbial Sensitivity Tests
2.
Gen Comp Endocrinol ; 333: 114186, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36521516

ABSTRACT

Exposure to long photoperiods stimulates, whereas exposure to short photoperiods transiently inhibit testicular function in Siberian hamsters via well-described neuroendocrine mechanisms. However, less is known about the intra-testicular regulation of these photoperiod-mediated changes. N6-methyladenosine (m6A) is one of the most common mRNA modifications in eukaryotes, with alterations in m6A mRNA methylation affecting testis function and fertility. We hypothesized that genes controlling m6A methylation such as methyltransferase-like-3 (Mettl3) and -14 (Mettl14) and Wilms' tumor-1 associated protein (Wtap), part of an mRNA methylating methyl-transferase complex, or the fat-mass-and-obesity-associated (Fto) and the α-ketoglutarate-dependent dioxygenase alkB homolog-5 (Alkbh5) genes responsible for m6A demethylation, may be differentially regulated by photoperiod in the testis. Male hamsters were exposed to long (LD, control) photoperiod for 14-weeks, short (SD) photoperiod for 2, 5, 8, 11 and 14-weeks to induce regression, or SD for 14-weeks followed by transfer to LD for 1, 2, 4 or 8-weeks to induce recrudescence (post-transfer, PT). SD exposure significantly reduced body, testis, and epididymal masses compared to all other groups. Spermatogenic index, seminiferous tubule diameters and testosterone concentrations significantly decreased in SD as compared to LD, returning to levels no different than LD in post-transfer groups. SD exposure significantly decreased Wtap, Fto, Alkbh5, but increased Mettl14 mRNA expression as compared to LD, with values in PT groups restored to LD levels. Mettl3 mRNA expression did not change. These results suggest that testicular recovery induced by stimulatory photoperiod is relatively rapid, and that the methyltransferase complex may play a role during photostimulated testicular recrudescence.


Subject(s)
Methyltransferases , Phodopus , Photoperiod , Testis , Animals , Cricetinae , Male , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Methyltransferases/genetics , Methyltransferases/metabolism , Phodopus/physiology , Recurrence , RNA, Messenger/genetics , Testis/metabolism , Testis/physiology
3.
Vet Pathol ; 59(5): 850-859, 2022 09.
Article in English | MEDLINE | ID: mdl-35674201

ABSTRACT

Juvenile common thresher sharks (Alopias vulpinus) have been recently stranding along the California coastline. Using Illumina sequencing of the bacterial 16S rRNA gene along with necropsy, cytological, bacteriological, and histological techniques, we screened microbial communities and described lesions characterizing affected sharks with the purpose of identifying potential pathogen sources and pathologic processes. Histopathological assessment of moribund sharks revealed severe meningoencephalitis, as previously described in stranded salmon sharks (Lamna ditropis), along with inflammation of the inner ear and subcutaneous tissues surrounding the endolymphatic ducts. Furthermore, inflamed areas were characterized by the prevalence of Carnobacterium maltaromaticum, suggesting this bacterium as a potential pathogen that gains access to the inner ear through the endolymphatic ducts, with subsequent spread into the brain. The absence or low abundance of this bacterium in the spiral valve in both healthy and infected sharks suggests that Carnobacterium is not a commensal member of their digestive communities and the spiral valve is unlikely to be the source of the pathogen. Furthermore, phylogenetic analysis suggests that C. maltaromaticum strains isolated from diseased sharks have minimal genetic variation and differ from other strains originating from food or diseased teleosts. While a C. maltaromaticum-like organism has previously been associated with meningoencephalitis in salmon shark strandings, this is the first study to report common thresher shark strandings associated with C. maltaromaticum, involving the endolymphatic ducts as portals of entry to the brain.


Subject(s)
Meningoencephalitis , Otitis , Sharks , Animals , Bacteria , Carnobacterium , Meningoencephalitis/veterinary , Otitis/veterinary , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Article in English | MEDLINE | ID: mdl-36041709

ABSTRACT

Ovarian cyclicity is variable in adult Siberian hamsters (Phodopus sungorus), who respond to long breeding season photoperiods with follicle development and ovulation, while short photoperiods typical of the non-breeding season induce gonadal atrophy. Recent RNAseq results identified ovarian matrix components and regulators of metabolism as differentially regulated by photoperiod; however, the impact of photoperiod across a full cycle of ovarian regression and recrudescence had not been explored for additional regulators of ovarian metabolism and extracellular matrix components. We hypothesized that matrix and metabolism-related genes would be expressed differentially across photoperiods that mimic breeding and non-breeding season daylengths. Hamsters were housed in one of four photoperiod groups: long day (16 h of light per day: 8 h of dark; LD, controls), short day regressed (8 L:16D; SD, regressed), and females exposed to SD then transferred to LD to stimulate return of ovarian function for 2 (early recrudescence), or 8 (late recrudescence) weeks. Plasma leptin concentrations along with expression of ovarian versican and liver-receptor homolog-1/Nr582 mRNA decreased in SD compared to LD and late recrudescence, while vimentin mRNA expression peaked in early and late recrudescence. Ovarian expression of fibronectin and extracellular matrix protein-1 was low in LD ovaries and increased in regressed and recrudescing groups. Expression of hyaluronidase-2, nectin-2, liver-X receptors-α and-ß, and adiponectin mRNA peaked in late recrudescence, with no changes noted for adiponectin receptor-1 and -2. The results offer a first look at the parallels between expression of these genes and the dynamic remodeling that occurs during ovarian regression and recrudescence.


Subject(s)
Ovary , Phodopus , Adiponectin/genetics , Adiponectin/metabolism , Animals , Cricetinae , Extracellular Matrix/metabolism , Female , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Leptin/metabolism , Nectins/genetics , Nectins/metabolism , Ovary/metabolism , Phodopus/physiology , Photoperiod , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Recurrence , Seasons , Versicans/genetics , Versicans/metabolism , Vimentin/genetics , Vimentin/metabolism
5.
Biol Reprod ; 102(3): 539-559, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31724051

ABSTRACT

In Siberian hamsters, exposure to short days (SDs, 8 h light:16 h dark) reduces reproductive function centrally by decreasing gonadotropin secretion, whereas subsequent transfer of photoinhibited hamsters to stimulatory long days (LDs, 16 L:8 D) promotes follicle stimulating hormone (FSH) release inducing ovarian recrudescence. Although differences between SD and LD ovaries have been investigated, a systematic investigation of the ovarian transcriptome across photoperiod groups to identify potentially novel factors that contribute to photostimulated restoration of ovarian function had not been conducted. Hamsters were assigned to one of four photoperiod groups: LD to maintain ovarian cyclicity, SD to induce ovarian regression, or post transfer (PT), where females housed in SD for 14-weeks were transferred to LD for 2-days or 1-week to reflect photostimulated ovaries prior to (PTd2) and following (PTw1) the return of systemic FSH. Ovarian RNA was extracted to create RNA-sequencing libraries and short-read sequencing Illumina assays that mapped and quantified the ovarian transcriptomes (n = 4/group). Ovarian and uterine masses, plasma FSH, and numbers of antral follicles and corpora lutea decreased in SD as compared to LD ovaries (P < 0.05). When reads were aligned to the mouse genome, 18 548 genes were sufficiently quantified. Most of the differentially expressed genes noted between functional LD ovaries and regressed SD ovaries; however, five main expression patterns were identified across photoperiod groups. These results, generally corroborated by select protein immunostaining, provide a map of photoregulated ovary function and identify novel genes that may contribute to the photostimulated resumption of ovarian activity.


Subject(s)
Estrous Cycle/metabolism , Gene Expression Regulation , Ovary/metabolism , Photoperiod , Animals , Estrous Cycle/genetics , Female , Follicle Stimulating Hormone/blood , Gene Expression Profiling , Ovarian Follicle/metabolism , Phodopus
6.
Cancer Invest ; 37(3): 144-155, 2019.
Article in English | MEDLINE | ID: mdl-30907150

ABSTRACT

Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.


Subject(s)
Brain Neoplasms/drug therapy , Cyanoacrylates/therapeutic use , Dynamin II/antagonists & inhibitors , Glioma/drug therapy , Indoles/therapeutic use , Neoplastic Stem Cells/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dynamin II/metabolism , Glioma/metabolism , Glioma/pathology , Humans , Molecular Targeted Therapy/methods , Neoplastic Stem Cells/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
Mol Reprod Dev ; 85(10): 746-759, 2018 10.
Article in English | MEDLINE | ID: mdl-30091812

ABSTRACT

In vitro culture has been used to study different aspects of ovarian function; however, this technique has not been applied to study recrudescence, or the return of ovarian function in seasonally breeding species. In Siberian hamsters, exposure to inhibitory photoperiods induces declines in ovarian function, which are restored with photostimulation. Because these changes are mediated by changes in systemic gonadotropin (GT) secretion, we hypothesized that culturing photoregressed ovaries with GT would restore aspects of function and induce expression of key folliculogenic factors. Adult female Siberian hamsters were exposed to either long-day (LD; 16L:8D) or short-day (SD; 8L:16D) photoperiods for 14 weeks to maintain in vivo cyclicity or induce gonadal regression, respectively. Isolated ovaries were then cultured for 10 days with or without GT. Ovarian mass and messenger RNA (mRNA) expression of mitotic marker Pcna were increased in cultured SD ovaries (cSD) ovaries with GT as compared to without GT, with no changes noted among cultured LD (cLD) ovaries. Media estradiol and progesterone concentrations increased in both cLD and cSD ovaries cultured with GT as compared to without GT. No differences in follicle numbers or incidence of apoptosis were noted across groups. In addition, differential mRNA expression of folliculogenic growth factors ( Bmp-4, Ntf-3, Inh-α, Gdf-9, Igf-1, Has-2, and Cox-2) was observed in cSD treated with or without GT. Together, these results suggest that this in vitro model could be a useful tool to (a) study the return of function in photoregressed ovaries, and (b) to identify the specific roles folliculogenic factors play in ovarian recrudescence.


Subject(s)
Estrous Cycle , Gene Expression Regulation , Ovary/metabolism , Photoperiod , Animals , Cricetinae , Female , Organ Culture Techniques , Phodopus
8.
Gen Comp Endocrinol ; 260: 90-99, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29317212

ABSTRACT

The early stages of ovarian folliculogenesis generally progress independent of gonadotropins, whereas later stages require signaling initiated by FSH. In Siberian hamsters, cycles of folliculogenesis are mediated by changes in photoperiod which depress the hypothalamic pituitary gonadal axis. Reduced gonadotropins lead to decreases in mature follicle development and ovulation; however, early stages of folliculogenesis have not been explored in regressed ovaries. We hypothesized that intraovarian factors that contribute predominantly to later stages of folliculogenesis would react to changes in photoperiod, whereas factors contributing to earlier stages would not change. To probe if the early stages of folliculogenesis continue in the photoinhibited ovary while late stages decline, we measured the mRNA abundance of factors that interact with FSH signaling (Fshr, Igf1, Cox2) and factors that can function independently of FSH (c-Kit, Kitl, Foxo3, Figla, Nobox, Sohlh1, Lhx8). While plasma FSH, antral follicles, and corpora lutea numbers declined with exposure to inhibitory photoperiod, the numbers of primordial, primary, and secondary follicles did not change. Expression of factors that interact with FSH signaling changed with changes in photoperiod; however, expression of factors that do not interact with FSH were not significantly altered. These results suggest that the photoinhibited ovary is not completely quiescent, as factors important for follicle selection and early follicle growth are still expressed in regressed ovaries. Instead, the lack of gonadotropin support that characterizes the non-breeding season appears to inhibit only final stages of folliculogenesis in Siberian hamsters.


Subject(s)
Anovulation/genetics , Follicle Stimulating Hormone/metabolism , Ovarian Follicle/physiology , Ovulation/genetics , Photoperiod , Transcriptome , Animals , Anovulation/metabolism , Cricetinae , Female , Follicle Stimulating Hormone/genetics , Gene Expression Profiling , Gonadotropins/genetics , Gonadotropins/metabolism , Light , Ovarian Follicle/metabolism , Ovarian Follicle/radiation effects , Ovary/metabolism , Ovary/radiation effects , Ovulation/radiation effects , Phodopus , RNA, Messenger/genetics , Receptors, FSH/genetics , Receptors, FSH/metabolism , Seasons , Signal Transduction/genetics , Signal Transduction/radiation effects , Time Factors , Transcriptome/radiation effects
9.
J Assist Reprod Genet ; 35(5): 785-792, 2018 May.
Article in English | MEDLINE | ID: mdl-29516335

ABSTRACT

PURPOSE: We hypothesized that the chemokine SDF1/CXCR4 system was present in feline cumulus-oocyte complexes (COCs) and that COCs cultured with SDF1 would directly upregulate gene expression in the ovulatory cascade. METHODS: Ovaries (n = 50) were obtained from adult domestic cats during the breeding season and COCs were recovered from antral follicles. Because IVM media triggers cumulus-oocyte expansion, culture conditions needed to be optimized to study periovulatory genes. After optimization, the effects of 25 ng/ml SDF1 and the CXCR4 inhibitor were examined in a COC culture for 3, 12, and 24 h. RESULTS: MEM-hepes with 1% of charcoal stripped-FBS was the optimized culture medium, assessed by the expansion of COCs at 24 h in the gonadotropin (GNT) group but not in the media with serum alone. The mRNA expression of HAS2, TNFAIP6, PTX3, and AREG peaked at 3 h in GNT group as compared to all other groups (p < 0.05). COCs cultured with SDF1 showed increased HAS2 and TNFAIP6 mRNA expression at 3 h compared to negative controls and to the CXCR4 inhibitor group. CXCR4 and SDF1 immunostaining was present in both cumulus cells and the oocyte. CONCLUSIONS: These results demonstrate that GNT stimulation upregulates key periovulatory genes and expansion in feline COCs from antral follicles, and support the use of this culture system to examine molecular processes within the COC. In addition, SDF1 directly promotes key periovulatory genes in feline COCs, suggesting that the SDF1-CXCR4 pathway may extend its function beyond a chemoattractant, and may play a direct role within the COC.


Subject(s)
Chemokine CXCL12/metabolism , Cumulus Cells/physiology , Gene Expression Regulation , Oocytes/physiology , Ovulation/genetics , Animals , Cats , Cell Culture Techniques/methods , Chemokine CXCL12/pharmacology , Culture Media/chemistry , Culture Media/pharmacology , Cumulus Cells/cytology , Cumulus Cells/drug effects , Female , Gene Expression Regulation/drug effects , Gonadotropins/pharmacology , Oocytes/cytology , Oocytes/drug effects , Receptors, CXCR4/metabolism
10.
Gen Comp Endocrinol ; 216: 46-53, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25910436

ABSTRACT

Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3ß-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3ß-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.


Subject(s)
Biomarkers/metabolism , Dipeptides/pharmacology , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinases/chemistry , Ovary/physiology , Photoperiod , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Cricetinae , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Ovary/drug effects , Ovary/radiation effects , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
11.
Bioorg Med Chem ; 22(5): 1690-9, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24508308

ABSTRACT

Oroidin (1), (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dibromo-1H-pyrrole-2-carboxamide, is a pyrrole alkaloid isolated from the marine sponge Agelas oroides. Routine screening in a panel of twelve cancer cell lines revealed 1 to be poorly cytotoxic with the 50% growth inhibition concentration (GI50) of 42 µM in MCF-7 (breast) cells and 24 µM in A2780 (ovarian) cells and >50 µM in all other cell lines tested. The development of eight focused libraries comprising thirty compounds total identified N-(biphenyl-4-ylmethyl)-1H-pyrrole-2-carboxamide (4l), N-benzyl-4,5-dibromo-1H-pyrrole-2-carboxamide (5a) and N-(biphenyl-4-ylmethyl)-4,5-dibromo-1H-pyrrole-2-carboxamide (5l) as potent inhibitors of cell growth in our panel of cell lines. Of these compounds GI50 values of <5 µM were observed with 4l against HT29 (colon) and SW480 (colon); 5a against HT29; and 5l against HT29, SW480, MCF-7, A431 (skin), Du145 (prostate), BE2-C (neuroblastoma) and MIA (pancreas) cell lines. As a cancer class, colon cancer appears to be more sensitive to the oroidin series of compounds, with analogue 5l being the most active.


Subject(s)
Pyrroles/chemical synthesis , Animals , Biological Products , Cell Proliferation , Molecular Structure , Pyrroles/chemistry , Structure-Activity Relationship
12.
Chron Mentor Coach ; 8(1): 58-71, 2024.
Article in English | MEDLINE | ID: mdl-39100941

ABSTRACT

Positive and inclusive mentoring of undergraduate research students, particularly of students from historically underrepresented groups is critical. The Advancing Inclusive Mentoring (AIM) program was developed to share inclusive mentoring practices with mentors at undergraduate-focused campuses and was assessed across five minority-serving universities. Self-ratings of mentorship skill as very- and exceptionally developed increased by 58% after AIM completion, and 93% of participants indicated they were likely to change their mentoring following AIM. While 93% of mentors rated the AIM program as beneficial, and 88% found most or all six modules pertinent to their mentoring, campus variations existed in perceived benefit (87%-100%) and pertinence (80-97%). These results suggest that AIM is effective training for mentors of undergraduate researchers, including those from historically underrepresented groups.

13.
Mol Reprod Dev ; 80(11): 895-907, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23877969

ABSTRACT

Exposure of Siberian hamsters to short photoperiod (SD) inhibits ovarian function, including folliculogenesis, whereas function is restored with their transfer to long photoperiods (LD). To investigate the mechanism of photo-stimulated recrudescence, we assessed key folliculogenic factors-anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor-9 (GDF9), and bone morphogenic protein-15 (BMP15)-across the estrus cycle and in photo-regressed and recrudescing ovaries. Adult hamsters were exposed to either LD or SD for 14 weeks, which respectively represent functional and regressed ovaries. Select regressed hamsters were transferred back to LD for 2 (post-transfer week 2; PTw2) or 8 weeks (PTw8). Ovaries were collected and fixed in formalin for immunohistochemistry or frozen in liquid nitrogen for real-time PCR. AMH, inhibin-α, GDF9, and BMP15 mRNA and protein were detected in all stages of the estrus cycle. Fourteen weeks of SD exposure increased (P < 0.05) ovarian AMH, GDF9, and BMP15, but not inhibin-α mRNA levels as compared to LD. Transfer of regressed hamsters to stimulatory long photoperiod for 8 weeks returned AMH and GDF9 mRNA levels to LD-treated levels, and further increased mRNA levels for inhibin-α and BMP15. Immunostaining for AMH, inhibin-α, GDF9, and BMP15 proteins was most intense in preantral/antral follicles and oocytes. The overall immunostaining extent for AMH and inhibin-α generally mirrored the mRNA data, though no changes were observed for GDF9 or BMP15 immunostaining. Shifts in mRNA and protein levels across photoperiod conditions suggest possible syncretic roles for these folliculogenic factors in photo-stimulated recrudescence via potential regulation of follicle recruitment, preservation, and development.


Subject(s)
Anti-Mullerian Hormone/analysis , Bone Morphogenetic Protein 15/analysis , Growth Differentiation Factor 9/analysis , Inhibins/analysis , Ovary , Photoperiod , RNA, Messenger/analysis , Animals , Anti-Mullerian Hormone/chemistry , Anti-Mullerian Hormone/genetics , Anti-Mullerian Hormone/metabolism , Bone Morphogenetic Protein 15/chemistry , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Cricetinae , Estradiol/blood , Female , Growth Differentiation Factor 9/chemistry , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Humans , Immunohistochemistry , Inhibins/chemistry , Inhibins/genetics , Inhibins/metabolism , Ovary/chemistry , Ovary/metabolism , Ovary/radiation effects , Phodopus , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recurrence
14.
Eur J Med Chem ; 247: 115001, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36577213

ABSTRACT

Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 µM; R-isomer EC50 = 3.44 µM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 µM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 µM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 µM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 µM, respectively).


Subject(s)
Dynamin I , Dynamins , Dynamin I/chemistry , Dynamin I/metabolism , Dynamins/pharmacology , Carbazoles/pharmacology , GTP Phosphohydrolases , Actins , Clathrin/metabolism , Clathrin/pharmacology , Endocytosis
15.
RSC Med Chem ; 14(8): 1492-1511, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37593570

ABSTRACT

We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 µM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 µM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 µM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 µM, IC50(CME) <30 µM and IC50(SVE) from 12-265 µM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 µM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.

16.
J Excell Coll Teach ; 33(4): 105-132, 2022.
Article in English | MEDLINE | ID: mdl-37485248

ABSTRACT

The Advancing Inclusive Mentoring (AIM) Program was created to share best practices in inclusive and positive mentoring with faculty members who work with undergraduate or graduate students on independent research, scholarly, or creative works across disciplines. This hybrid program contains 35 online episodes within six modules and is complemented by six facilitated group discussion sessions. Participants' viewing behaviors and responses to a post-program survey were assessed. Results showed that the AIM program was beneficial, useful, and engaging to participants. Furthermore, the program increased the participants' knowledge base and relevant mentoring skills for serving diverse and underrepresented students.

17.
ChemMedChem ; 17(24): e202200400, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36351775

ABSTRACT

The Bis-T series of compounds comprise some of the most potent inhibitors of dynamin GTPase activity yet reported, e. g., (2E,2'E)-N,N'-(propane-1,3-diyl)bis(2-cyano-3-(3,4-dihydroxyphenyl)acrylamide) (2), Bis-T-22. The catechol moieties are believed to limit cell permeability, rendering these compounds largely inactive in cells. To solve this problem, a prodrug strategy was envisaged and eight ester analogues were synthesised. The shortest and bulkiest esters (acetate and butyl/tert-butyl) were found to be insoluble under physiological conditions, whilst the remaining five were soluble and stable under these conditions. These five were analysed for plasma stability and half-lives ranged from ∼2.3 min (propionic ester 4), increasing with size and bulk, to greater than 24 hr (dimethyl carbamate 10). Similar profiles where observed with the rate of formation of Bis-T-22 with half-lives ranging from ∼25 mins (propionic ester 4). Propionic ester 4 was chosen to undergo further testing and was found to inhibit endocytosis in a dose-dependent manner with IC50 ∼8 µM, suggesting this compound is able to effectively cross the cell membrane where it is rapidly hydrolysed to the desired Bis-T-22 parent compound.


Subject(s)
Prodrugs , Prodrugs/pharmacology , Dynamins/pharmacology , Esters/pharmacology , Endocytosis
18.
Antibiotics (Basel) ; 11(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36289959

ABSTRACT

Multidrug-resistant (MDR) Gram-negative pathogens, especially Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Enterobacter spp., are recognized by the World Health Organization as the most critical priority pathogens in urgent need of drug development. In this study, the in vitro antimicrobial activity of robenidine analogues NCL259 and NCL265 was tested against key human and animal Gram-negative clinical isolates and reference strains. NCL259 and NCL265 demonstrated moderate antimicrobial activity against these Gram-negative priority pathogens with NCL265 consistently more active, achieving lower minimum inhibitory concentrations (MICs) in the range of 2−16 µg/mL. When used in combination with sub-inhibitory concentrations of polymyxin B to permeabilize the outer membrane, NCL259 and NCL265 elicited a synergistic or additive activity against the reference strains tested, reducing the MIC of NCL259 by 8- to 256- fold and the MIC of NCL265 by 4- to 256- fold. A small minority of Klebsiella spp. isolates (three) were resistant to both NCL259 and NCL265 with MICs > 256 µg/mL. This resistance was completely reversed in the presence of the efflux pump inhibitor phenylalanine-arginine-beta-naphthylamide (PAßN) to yield MIC values of 8−16 µg/mL and 2−4 µg/mL for NCL259 and NCL256, respectively. When NCL259 and NCL265 were tested against wild-type E. coli isolate BW 25113 and its isogenic multidrug efflux pump subunit AcrB deletion mutant (∆AcrB), the MIC of both compounds against the mutant ∆AcrB isolate was reduced 16-fold compared to the wild-type parent, indicating a significant role for the AcrAB-TolC efflux pump from Enterobacterales in imparting resistance to these robenidine analogues. In vitro cytotoxicity testing revealed that NCL259 and NCL265 had much higher levels of toxicity to a range of human cell lines compared to the parent robenidine, thus precluding their further development as novel antibiotics against Gram-negative pathogens.

19.
ChemMedChem ; 17(1): e202100560, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34590434

ABSTRACT

Five focused libraries of pyrimidine-based dynamin GTPase inhibitors, in total 69 compounds were synthesised, and their dynamin inhibition and broad-spectrum cytotoxicity examined. Dynamin plays a crucial role in mitosis, and as such inhibition of dynamin was expected to broadly correlate with the observed cytotoxicity. The pyrimidines synthesised ranged from mono-substituted to trisubstituted. The highest levels of dynamin inhibition were noted with di- and tri- substituted pyrimidines, especially those with pendent amino alkyl chains. Short chains and simple heterocyclic rings reduced dynamin activity. There were three levels of dynamin activity noted: 1-10, 10-25 and 25-60 µM. Screening of these compounds in a panel of cancer cell lines: SW480 (colon), HT29 (colon), SMA (spontaneous murine astrocytoma), MCF-7 (breast), BE2-C (glioblastoma), SJ-G2 (neuroblastoma), MIA (pancreas), A2780 (ovarian), A431 (skin), H460 (lung), U87 (glioblastoma) and DU145 (prostate) cell lines reveal a good correlation between the observed dynamin inhibition and the observed cytotoxicity. The most active analogues (31 a,b) developed returned average GI50 values of 1.0 and 0.78 µM across the twelve cell lines examined. These active analogues were: N2 -(3-dimethylaminopropyl)-N4 -dodecyl-6-methylpyrimidine-2,4-diamine (31 a) and N4 -(3-dimethylaminopropyl)-N2 -dodecyl-6-methylpyrimidine-2,4-diamine (31 b).


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Dynamins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Dynamins/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
20.
ChemMedChem ; 17(21): e202200341, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36085254

ABSTRACT

From four focused compound libraries based on the known anticoccidial agent robenidine, 44 compounds total were synthesised and screened for antigiardial activity. All active compounds were counter-screened for antibiotic and cytotoxic action. Of the analogues examined, 21 displayed IC50 <5 µM, seven with IC50 <1.0 µM. Most active were 2,2'-bis{[4-(trifluoromethoxy)phenyl]methylene}carbonimidic dihydrazide hydrochloride (30), 2,2'-bis{[4-(trifluoromethylsulfanyl)phenyl]methylene}carbonimidic dihydrazide hydrochloride (32), and 2,2'-bis[(2-bromo-4,5-dimethoxyphenyl)methylene]carbonimidic dihydrazide hydrochloride (41) with IC50 =0.2 µM. The maximal observed activity was a 5 h IC50 value of 0.2 µM for 41. The clinically used metronidazole was inactive at this timepoint at a concentration of 25 µM. Robenidine off-target effects at bacteria and cell line toxicity were removed. Analogue 41 was well tolerated in mice treated orally (100 mg/kg). Following 5 h treatment with 41, no Giardia regrowth was noted after 48 h.


Subject(s)
Guanidines , Robenidine , Animals , Mice , Guanidine , Metronidazole/pharmacology , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL