Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(49): 17564-9, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25422439

ABSTRACT

Chickens represent by far the most important poultry species, yet the number, locations, and timings of their domestication have remained controversial for more than a century. Here we report ancient mitochondrial DNA sequences from the earliest archaeological chicken bones from China, dating back to ∼ 10,000 B.P. The results clearly show that all investigated bones, including the oldest from the Nanzhuangtou site, are derived from the genus Gallus, rather than any other related genus, such as Phasianus. Our analyses also suggest that northern China represents one region of the earliest chicken domestication, possibly dating as early as 10,000 y B.P. Similar to the evidence from pig domestication, our results suggest that these early domesticated chickens contributed to the gene pool of modern chicken populations. Moreover, our results support the idea that multiple members of the genus Gallus, specifically Gallus gallus and Gallus sonneratii contributed to the gene pool of the modern domestic chicken. Our results provide further support for the growing evidence of an early mixed agricultural complex in northern China.


Subject(s)
Animal Husbandry/history , Biological Evolution , Chickens/genetics , DNA, Mitochondrial/analysis , Animals , Archaeology/methods , Bayes Theorem , Bone and Bones , China , Gene Pool , Geography , Haplotypes , History, Ancient , Models, Genetic , Molecular Sequence Data , Phylogeny , Species Specificity
2.
Phys Chem Chem Phys ; 18(30): 20338-44, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27327268

ABSTRACT

Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.

4.
Sci Rep ; 7(1): 5602, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798357

ABSTRACT

It is widely accepted that modern pigs were domesticated independently at least twice, and Chinese native pigs are deemed as direct descendants of the first domesticated pigs in the corresponding domestication centers. By analyzing mitochondrial DNA sequences of an extensive sample set spanning 10,000 years, we find that the earliest pigs from the middle Yellow River region already carried the maternal lineages that are dominant in both younger archaeological populations and modern Chinese pigs. Our data set also supports early Neolithic pig utilization and a long-term in situ origin for northeastern Chinese pigs during 8,000-3,500 BP, suggesting a possibly independent domestication in northeast China. Additionally, we observe a genetic replacement in ancient northeast Chinese pigs since 3,500 BP. The results not only provide increasing evidence for pig origin in the middle Yellow River region but also depict an outline for the process of early pig domestication in northeast China.


Subject(s)
Animals, Domestic/genetics , Mitochondria/genetics , Sequence Analysis, DNA/methods , Sus scrofa/genetics , Animals , China , DNA, Mitochondrial/genetics , Domestication , Evolution, Molecular , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL