Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lancet Oncol ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39362232

ABSTRACT

Following on from the 2015 Lancet Oncology Commission on expanding global access to radiotherapy, Radiotherapy and theranostics: a Lancet Oncology Commission was created to assess the access and availability of radiotherapy to date and to address the important issue of access to the promising field of theranostics at a global level. A marked disparity in the availability of radiotherapy machines between high-income countries and low-income and middle-income countries (LMICs) has been identified previously and remains a major problem. The availability of a suitably trained and credentialled workforce has also been highlighted as a major limiting factor to effective implementation of radiotherapy, particularly in LMICs. We investigated initiatives that could mitigate these issues in radiotherapy, such as extended treatment hours, hypofractionation protocols, and new technologies. The broad implementation of hypofractionation techniques compared with conventional radiotherapy in prostate cancer and breast cancer was projected to provide radiotherapy for an additional 2·2 million patients (0·8 million patients with prostate cancer and 1·4 million patients with breast cancer) with existing resources, highlighting the importance of implementing new technologies in LMICs. A global survey undertaken for this Commission revealed that use of radiopharmaceutical therapy-other than 131I-was highly variable in high-income countries and LMICs, with supply chains, workforces, and regulatory issues affecting access and availability. The capacity for radioisotope production was highlighted as a key issue, and training and credentialling of health professionals involved in theranostics is required to ensure equitable access and availability for patient treatment. New initiatives-such as the International Atomic Energy Agency's Rays of Hope programme-and interest by international development banks in investing in radiotherapy should be supported by health-care systems and governments, and extended to accelerate the momentum generated by recognising global disparities in access to radiotherapy. In this Commission, we propose actions and investments that could enhance access to radiotherapy and theranostics worldwide, particularly in LMICs, to realise health and economic benefits and reduce the burden of cancer by accessing these treatments.

2.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853277

ABSTRACT

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Subject(s)
CD55 Antigens , Cell Nucleus , Chromatin , Cisplatin , Drug Resistance, Neoplasm , Histones , Neoplastic Stem Cells , Ovarian Neoplasms , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Mice , CD55 Antigens/metabolism , CD55 Antigens/genetics , Cell Line, Tumor , Histones/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Methylation , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Protein Transport
3.
J Neurooncol ; 163(3): 647-655, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37341842

ABSTRACT

PURPOSE: Distinguishing radiation necrosis from tumor progression among patients with brain metastases previously treated with stereotactic radiosurgery represents a common diagnostic challenge. We performed a prospective pilot study to determine whether PET/CT with 18F-fluciclovine, a widely available amino acid PET radiotracer, repurposed intracranially, can accurately diagnose equivocal lesions. METHODS: Adults with brain metastases previously treated with radiosurgery presenting with a follow-up tumor-protocol MRI brain equivocal for radiation necrosis versus tumor progression underwent an 18F-fluciclovine PET/CT of the brain within 30 days. The reference standard for final diagnosis consisted of clinical follow-up until multidisciplinary consensus or tissue confirmation. RESULTS: Of 16 patients imaged from 7/2019 to 11/2020, 15 subjects were evaluable with 20 lesions (radiation necrosis, n = 16; tumor progression, n = 4). Higher SUVmax statistically significantly predicted tumor progression (AUC = 0.875; p = 0.011). Lesion SUVmean (AUC = 0.875; p = 0.018), SUVpeak (AUC = 0.813; p = 0.007), and SUVpeak-to-normal-brain (AUC = 0.859; p = 0.002) also predicted tumor progression, whereas SUVmax-to-normal-brain (p = 0.1) and SUVmean-to-normal-brain (p = 0.5) did not. Qualitative visual scores were significant predictors for readers 1 (AUC = 0.750; p < 0.001) and 3 (AUC = 0.781; p = 0.045), but not for reader 2 (p = 0.3). Visual interpretations were significant predictors for reader 1 (AUC = 0.898; p = 0.012) but not for reader 2 (p = 0.3) or 3 (p = 0.2). CONCLUSIONS: In this prospective pilot study of patients with brain metastases previously treated with radiosurgery presenting with a contemporary MRI brain with a lesion equivocal for radiation necrosis versus tumor progression, 18F-fluciclovine PET/CT repurposed intracranially demonstrated encouraging diagnostic accuracy, supporting the pursuit of larger clinical trials which will be necessary to establish diagnostic criteria and performance.


Subject(s)
Brain Neoplasms , Radiosurgery , Adult , Humans , Positron Emission Tomography Computed Tomography/methods , Radiosurgery/adverse effects , Pilot Projects , Prospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/etiology , Necrosis/diagnostic imaging , Necrosis/etiology
4.
J Biol Chem ; 297(2): 100965, 2021 08.
Article in English | MEDLINE | ID: mdl-34270956

ABSTRACT

Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.


Subject(s)
Cell Adhesion Molecules , Nerve Tissue Proteins , Semaphorins , Cell Membrane/metabolism , Cell Movement , Humans , Signal Transduction
5.
J Neurooncol ; 158(3): 341-348, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35486307

ABSTRACT

PURPOSE: We sought to evaluate the effects of concurrent temozolomide-based chemoradiation therapy on neurocognitive function in patients with low-grade glioma (LGG). MATERIALS/METHODS: We included adult patients with LGG who were treated postoperatively with radiotherapy (RT) with concurrent and adjuvant temozolomide (TMZ). Patients were evaluated with comprehensive psychometric tests at baseline (prior to RT + TMZ) and at various time intervals following RT + TMZ. Baseline cognitive performance was analyzed by sex, age, education history, history of seizures, IDH mutation status, and 1p/19q codeletion status. Changes in neurocognitive performance were evaluated over time. RESULTS: Thirty-seven LGG patients (mean age 43.6, 59.5% male) had baseline neurocognitive evaluation. Patients with an age > 40 years old at diagnosis and those with an education > 16 years demonstrated superior baseline verbal memory as assessed by HVLT. No other cognitive domains showed differences when stratified by the variables mentioned above. A total of 22 LGG patients had baseline and post RT + TMZ neurocognitive evaluation. Overall, patients showed no statistical difference between group mean test scores prior to and following RT + TMZ on all psychometric measures (with the exception of HVLT Discrimination). CONCLUSION: Cognitive function remained stable following RT + TMZ in LGG patients evaluated prospectively up to 2 years. The anticipated analysis of RTOG 0424 will provide valuable neurocognitive outcomes specifically for high risk LGG patients treated with RT + TMZ.


Subject(s)
Brain Neoplasms , Glioma , Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/genetics , Cognition , Female , Glioma/genetics , Humans , Male , Temozolomide/therapeutic use
6.
J Neurooncol ; 156(3): 499-507, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35064450

ABSTRACT

PURPOSE: Low-grade glioma (LGG) exhibits longer median survival than high-grade brain tumors, and thus impact of our therapies on patient quality of life remains a crucial consideration. This study evaluated the effects of concurrent temozolomide-based chemoradiation (RT + TMZ) or observation on quality of life (QOL) in patients with low-grade glioma. METHODS: We completed a retrospective cross-sectional study of adults with LGG who underwent surgery with known molecular classification from 1980 to 2018. Postoperatively, patients were either observed or received adjuvant concurrent temozolomide-based chemoradiation. EQ-5D and PHQ-9 depression screen were completed before outpatient visits every 2-3 months. Baseline score was defined as ± 30 days within initial operation. RESULTS: Of the 63 patients (mean age 44 ± 17 years, 51% female) with baseline EQ-5D or PHQ-9 depression screen data and at least one follow-up measure, 30 (48%) were observed and 33 (52%) received RT + TMZ. No significant decline was seen in EQ-5D or PHQ-9 scores at 3, 6, 9, 12, and 24 months compared to baseline scores for all patients. At each time point, there was no significant difference between those who were observed or received adjuvant therapy. The linear mixed model estimating PHQ-9 value or EQ-5D index demonstrated that there was no significant difference in PHQ-9 or EQ-5D index between treatment groups (p = 0.42 and p = 0.54, respectively) or time points (p = 0.24 and p = 0.99, respectively). CONCLUSION: Our study found no significant decline in patient QOL or depression scores as assessed by patient- reported outcome measures for patients with low-grade glioma up to 2 years following surgery. We found no difference between RT + TMZ compared to observation during this time frame. Additional follow-up can help identify the longer-term impact of treatment strategy on patient experience.


Subject(s)
Brain Neoplasms , Chemoradiotherapy , Glioma , Quality of Life , Temozolomide , Watchful Waiting , Adult , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cross-Sectional Studies , Female , Glioma/pathology , Glioma/therapy , Humans , Male , Middle Aged , Neoplasm Grading , Retrospective Studies , Temozolomide/therapeutic use , Treatment Outcome
7.
Genes Dev ; 27(6): 670-82, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23512660

ABSTRACT

Epithelial-mesenchymal transition (EMT) is thought to be an important, possibly essential, component of the process of tumor dissemination and metastasis. About 20%-30% of Hras mutant mouse skin carcinomas induced by chemical initiation/promotion protocols have undergone EMT. Reduced exposure to TPA-induced chronic inflammation causes a dramatic reduction in classical papillomas and squamous cell carcinomas (SCCs), but the mice still develop highly invasive carcinomas with EMT properties, reduced levels of Hras and Egfr signaling, and frequent Ink4/Arf deletions. Deletion of Hras from the mouse germline also leads to a strong reduction in squamous tumor development, but tumors now acquire activating Kras mutations and exhibit more aggressive metastatic properties. We propose that invasive carcinomas can arise by different genetic and biological routes dependent on exposure to chronic inflammation and possibly from different target cell populations within the skin. Our data have implications for the use of inhibitors of inflammation or of Ras/Egfr pathway signaling for prevention or treatment of invasive cancers.


Subject(s)
Carcinoma, Squamous Cell/pathology , Inflammation/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Skin Neoplasms/pathology , Animals , Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Epithelial-Mesenchymal Transition , ErbB Receptors/metabolism , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Markers/genetics , Mice , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Skin Neoplasms/genetics
8.
Int J Hyperthermia ; 36(1): 986-992, 2019.
Article in English | MEDLINE | ID: mdl-31544546

ABSTRACT

Background: Treatment for locally recurrent breast cancer poses a significant challenge because the benefits in local control must be weighed against the increased risk of side effects of the treatment. Frequently, patients have been heavily pre-treated with radiation and several types of chemotherapy. Moreover, they often present with large volumes of bulky disease, further complicating management. Hyperthermia can be used to improve the efficacy of radiation, particularly in the setting of recurrent disease. Methods: We reviewed our clinical and dosimetric experience of breast cancer patients who received hyperthermia and radiation for recurrent breast cancer from 2011 to 2017. Thirty-six patients were treated with hyperthermia and radiation. Median follow-up was 11 months. Thirty patients (83.3%) received prior radiotherapy. The most commonly used radiation fraction scheme was 32 Gy in 8 fractions. The median radiation dose at the time of recurrence was 35.5 Gy (range 20-64 Gy). Mild temperature hyperthermia was delivered two times per week. Results: The median repeat radiation volume was 574 cc (range 11-3620 cc). Electrons, conventional photons, and IMRT radiation techniques were used. IMRT was used for large and complex treatment volumes and showed acceptable doses to organs at risk. The overall response rate was 61.1%. Complete response was observed in 17 patients (47.2%), partial response in 5 patients (13.9%), stable disease in 11 patients (30.6%), and progressive disease in 3 patients (8.3%). Twenty-six patients experienced acute grade 1 and 2 toxicities, primarily pain and erythema; and 26 experienced long-term grade 1 and 2 toxicities, mainly hyperpigmentation and lymphedema. Three patients developed new ulcerations that healed with conservative management. One patient developed pulmonary fibrosis resulting in mild dyspnea on exertion. Conclusion: Hyperthermia and radiation provide good local control with a favorable side effect profile. Thermoradiotherapy may be offered to patients with recurrent breast cancer, including those with extensive volumes of disease.


Subject(s)
Breast Neoplasms/radiotherapy , Hyperthermia, Induced/methods , Radiometry/methods , Breast Neoplasms/pathology , Female , Humans , Neoplasm Recurrence, Local , Radiotherapy Dosage
9.
Mol Carcinog ; 55(9): 1387-96, 2016 09.
Article in English | MEDLINE | ID: mdl-26310697

ABSTRACT

The tumor suppressor TP53 can initiate a plethora of anti-proliferative effects to maintain genomic integrity under conditions of genotoxic stress. The N-terminal proline-rich domain (PRD) of TP53 is important in the regulation of TP53 activity and stability. A common polymorphism at codon 72 in this region has been associated with altered cancer risk in humans. The Trp53ΔP mouse, which carries a germline homozygous deletion of a region of the PRD, does not develop spontaneous tumors in a mixed 129/Sv and C57BL/6 genetic background, but is highly susceptible to a broad range of tumor types following total body exposure to 4 Gy gamma (γ) radiation. This contrasts with the tumor spectrum in Trp53 null (-/-) mice, which mainly develop thymic lymphomas and osteosarcomas. Analysis of genomic instability in tissues and cells from Trp53ΔP mice demonstrated elevated basal levels of aneuploidy, but this is not sufficient to drive spontaneous tumorigenesis, which requires an additional DNA damage stimulus. Levels of genomic instability did not increase significantly in Trp53ΔP mice following irradiation exposure, suggesting that other radiation effects including tissue inflammation, altered metabolism or autophagy, may play an important role. The Trp53ΔP mouse is a novel model to dissect the mechanisms of tumor development induced by radiation exposure. © 2015 Wiley Periodicals, Inc.


Subject(s)
Carcinogenesis/genetics , Genomic Instability , Neoplasms, Radiation-Induced/genetics , Tumor Suppressor Protein p53/genetics , Amino Acid Sequence , Animals , Autophagy , Female , Gamma Rays , Male , Mice , Mice, Inbred C57BL , Polyploidy , Proline/chemistry , Proline/genetics , Sequence Deletion , Tumor Suppressor Protein p53/chemistry
10.
Stem Cells ; 32(8): 2033-47, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24831540

ABSTRACT

Glioblastomas are highly lethal brain tumors containing tumor-propagating glioma stem cells (GSCs). The molecular mechanisms underlying the maintenance of the GSC phenotype are not fully defined. Here we demonstrate that the zinc finger and X-linked transcription factor (ZFX) maintains GSC self-renewal and tumorigenic potential by upregulating c-Myc expression. ZFX is differentially expressed in GSCs relative to non-stem glioma cells and neural progenitor cells. Disrupting ZFX by shRNA reduced c-Myc expression and potently inhibited GSC self-renewal and tumor growth. Ectopic expression of c-Myc to its endogenous level rescued the effects caused by ZFX disruption, supporting that ZFX controls GSC properties through c-Myc. Furthermore, ZFX binds to a specific sequence (GGGCCCCG) on the human c-Myc promoter to upregulate c-Myc expression. These data demonstrate that ZFX functions as a critical upstream regulator of c-Myc and plays essential roles in the maintenance of the GSC phenotype. This study also supports that c-Myc is a dominant driver linking self-renewal to malignancy.


Subject(s)
Glioblastoma/pathology , Kruppel-Like Transcription Factors/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation/physiology , Cells, Cultured , Chromatin Immunoprecipitation , Fluorescent Antibody Technique , Glioblastoma/metabolism , Humans , Immunoblotting , Immunohistochemistry , In Situ Nick-End Labeling , Neoplastic Stem Cells/metabolism , Reverse Transcriptase Polymerase Chain Reaction
11.
J Neurooncol ; 122(3): 421-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25670390

ABSTRACT

Cranial radiation can impact the cerebral vasculature in many ways, with a wide range of clinical manifestations. The incidence of these late effects including cerebrovascular accidents (CVAs), lacunar lesions, vascular occlusive disease including moyamoya syndrome, vascular malformations, and hemorrhage is not well known. This article reviews the preclinical findings regarding the pathophysiology of late radiation-induced vascular damage, and discusses the clinical incidence and risk factors for each type of vasculopathy. The pathophysiology is complex and dependent on the targeted blood vessels, and upregulation of pro-inflammatory and hypoxia-related genes. The risk factors for adult CVAs are similar to those for patients not exposed to cranial radiotherapy. For children, risks for late vascular complications include young age at radiotherapy, radiotherapy dose, NF1, tumor location, chemotherapy, and endocrine abnormalities. The incidence of late vascular complications of radiotherapy may be impacted by improved technology, therapeutic interventions, and appropriate follow up.


Subject(s)
Cerebrovascular Disorders/etiology , Radiation Injuries/etiology , Radiotherapy/adverse effects , Adult , Brain Neoplasms/radiotherapy , Cerebrovascular Disorders/epidemiology , Child , Databases, Factual/statistics & numerical data , Humans , Risk Factors
13.
Adv Exp Med Biol ; 853: 85-110, 2015.
Article in English | MEDLINE | ID: mdl-25895709

ABSTRACT

Radiation therapy is the most effective adjuvant treatment modality for virtually all patients with high-grade glioma. Its ability to improve patient survival has been recognized for decades. Cancer stem cells provide new insights into how tumor biology is affected by radiation and the role that this cell population can play in disease recurrence. Glioma stem cells possess a variety of intracellular mechanisms to resist and even flourish in spite of radiation, and their proliferation and maintenance appear tied to supportive stimuli from the tumor microenvironment. This chapter reviews the basis for our current use of radiation to treat high-grade gliomas, and addresses this model in the context of therapeutically resistant stem cells. We discuss the available evidence highlighting current clinical efforts to improve radiosensitivity, and newer targets worthy of further development.


Subject(s)
Brain Neoplasms/radiotherapy , Glioma/radiotherapy , Neoplastic Stem Cells/radiation effects , Animals , Brain Neoplasms/pathology , Glioma/pathology , Humans , Neoplastic Stem Cells/pathology , Radiation Tolerance , Tumor Microenvironment/radiation effects
14.
J Appl Clin Med Phys ; 16(4): 31­39, 2015 07 08.
Article in English | MEDLINE | ID: mdl-26218994

ABSTRACT

The purpose of this study was to compare the single-isocenter, four-field hybrid IMRT with the two-isocenter techniques to treat the whole breast and supraclavicular fields and to investigate the intrafraction motions in both techniques in the superior direction. Fifteen breast cancer patients who underwent lumpectomy and adjuvant radiation to the whole breast and supraclavicular (SCV) fossa at our institution were selected for this study. Two planning techniques were compared for the treatment of the breast and SCV lymph nodes. The patients were divided into three subgroups according to the whole breast volume. For the two-isocenter technique, conventional wedged or field-within-a-field tangents (FIF) were used to match with the same anterior field for the SCV region. For the single-isocenter technique, four-field hybrid IMRT was used for the tangent fields matched with a half blocked anterior field for the SCV region. To simulate the intrafraction uncertainties in the longitudinal direction for both techniques, the treatment isocenters were shifted by 1 mm and 2 mm in the superior direction. The average breast clinical tumor volume (CTV) receiving 100% (V(100%)) of the prescription dose (50 Gy) was 99.3% ± 0.5% and 96.4% ± 1.2% for the for two-isocenter and single-isocenter plans (р < 0.05), respectively. The breast CTV receiving 95% of the prescription dose (V(95%)) was close to 100% in both techniques. The average breast CTV receiving 105% (V(105%)) of the prescription dose was 32.4% ± 19.3% and 23.8% ± 13.3% (р = 0.08). The percentage volume of the breast CTV receiving 110% of the dose was 0.4% ± 1.2% in the two-isocentric technique vs. 0.1% ± 0.2% in the single-isocentric technique. The average uniformity index was 0.91 ± 0.02 vs. 0.91 ± 0.01 in both techniques (p = 0.04), but had no clinical impact. The percentage volume of the contralateral breast receiving a dose of 1 Gy was less than 2.3% in small breast patients and insignificant for medium and large breast sizes. The percentage of the total lung volume receiving > 20 Gy (V(20Gy)) and the heart receiving > 30 Gy (V(30Gy)) were 13.6% vs. 14.3% (р = 0.03) and 1.25% vs. 1.2% (р = 0.62), respectively. Shifting the treatment isocenter by 1 mm and 2 mm superiorly showed that the average maximum dose to 1 cc of the breast volume was 55.5 ± 1.8 Gy and 58.6 ± 4.3 Gy in the two-isocentric technique vs. 56.4 ± 2.1 Gy and 59.1 ± 5.1 Gy in the single-isocentric technique (р = 0.46, 0.87), respectively. The single-isocenter technique using four-field hybrid IMRT approach resulted in comparable plan quality as the two-isocentric technique. The single-isocenter technique is more sensitive to intra-fraction motion in the superior direction compared to the two-isocentric technique. The advantages of the single-isocenter include elimination of isocentric errors due to couch and collimator rotations and reduction in treatment time. This study supports consideration of a single-isocenter four-field hybrid IMRT technique for patients undergoing breast and supraclavicular nodal irradiation.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Lymph Nodes/pathology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Female , Humans , Lymph Nodes/radiation effects , Radiotherapy Dosage , Retrospective Studies
15.
Pac Symp Biocomput ; 29: 521-533, 2024.
Article in English | MEDLINE | ID: mdl-38160304

ABSTRACT

Advances in molecular characterization have reshaped our understanding of low-grade glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA), to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expression profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR, NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the robustness of our approach and revealed consistent survival traits across different patient populations. This study offers a comprehensive molecular classification of LGG, providing insights beyond traditional genetic markers. By integrating network analysis with patient clustering, we unveil a previously overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of the identified subnetworks. With broad implications for glioma research, our findings pave the way for further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA.


Subject(s)
Brain Neoplasms , Glioma , Humans , Prognosis , Computational Biology , Glioma/genetics , Glioma/pathology , Algorithms , Protein Interaction Maps , Brain Neoplasms/genetics , Brain Neoplasms/pathology
16.
Neuro Oncol ; 26(8): 1388-1401, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38456228

ABSTRACT

BACKGROUND: Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS: lncRNAs induced by hypoxia in GSCs were identified by RNA-seq. Lung cancer-associated transcript-1 (LUCAT1) expression was assessed by qPCR, RNA-seq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, The Cancer Genome Atlas, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNA-seq, Western blot, immunohistochemistry, co-IP, ChIP, ChIP-seq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS: A new isoform of Lucat1 is induced by Hypoxia inducible factor 1 alpha (HIF1α) and Nuclear factor erythroid 2-related factor 2 (NRF2) in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS: A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.


Subject(s)
Brain Neoplasms , Gene Expression Regulation, Neoplastic , Glioblastoma , Hypoxia-Inducible Factor 1, alpha Subunit , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Animals , Mice , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Disease Progression , Xenograft Model Antitumor Assays , Cell Proliferation , Tumor Cells, Cultured , Mice, Nude , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Apoptosis
17.
Neuro Oncol ; 26(9): 1651-1659, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38656347

ABSTRACT

BACKGROUND: Single-session stereotactic radiosurgery (SRS) or surgical resection alone for brain metastases larger than 2 cm results in unsatisfactory local control. We conducted a phase I trial for brain metastases(>2 cm) to determine the safety of preoperative SRS at escalating doses. METHODS: Radiosurgery dose was escalated at 3 Gy increments for 3 cohorts based on maximum tumor dimension starting at: 18 Gy for >2-3 cm, 15 Gy for >3-4 cm, and 12 Gy for >4-6 cm. Dose-limiting toxicity was defined as grade III or greater acute toxicity. RESULTS: A total of 35 patients/36 lesions were enrolled. For tumor size >2-3 cm, patients were enrolled up to the second dose level (21 Gy); for >3-4 cm and >4-6 cm cohorts the third dose level (21 and 18 Gy, respectively) was reached. There were 2 DLTs in the >3-4 cm arm at 21 Gy. The maximum tolerated dose of SRS for >2-3 cm was not reached; and was 18 Gy for both >3-4 cm arm and >4-6 cm arm. With a median follow-up of 64.0 months, the 6- and 12-month local control rates were 85.9% and 76.6%, respectively. One patient developed grade 3 radiation necrosis at 5 months. The 2-year rate of leptomeningeal disease (LMD) was 0%. CONCLUSIONS: Preoperative SRS with dose escalation followed by surgical resection for brain metastases greater than 2 cm in size demonstrates acceptable acute toxicity. The phase II portion of the trial will be conducted at the maximum tolerated SRS doses.


Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Radiosurgery/adverse effects , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Middle Aged , Male , Female , Aged , Adult , Maximum Tolerated Dose , Radiotherapy Dosage , Follow-Up Studies , Preoperative Care , Aged, 80 and over
18.
Biomedicines ; 12(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39335460

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. The gut microbiome has been implicated in outcomes for HCC, and gut microbe-derived products may serve as potential non-invasive indices for early HCC detection. This study evaluated differences in plasma concentrations of gut microbiota-derived metabolites. METHODS: Forty-one patients with HCC and 96 healthy controls were enrolled from surgical clinics at the Cleveland Clinic from 2016 to 2020. Gut microbiota-derived circulating metabolites detectable in plasma were compared between patients with HCC and healthy controls. Hierarchical clustering was performed for generating heatmaps based on circulating metabolite concentrations using ClustVis, with Euclidean and Ward settings and significant differences between metabolite concentrations were tested using a binary logistic regression model. RESULTS: In patients with HCC, 25 (61%) had histologically confirmed cirrhosis. Trimethylamine (TMA)-related metabolites were found at higher concentrations in those with HCC, including choline (p < 0.001), betaine (p < 0.001), carnitine (p = 0.007), TMA (p < 0.001) and trimethylamine N-oxide (TMAO, p < 0.001). Notably, concentrations of P-cresol glucuronide (p < 0.001), indole-lactic acid (p = 0.038), 5-hydroxyindoleacetic acid (p < 0.0001) and 4-hydroxyphenyllactic acid (p < 0.001) were also increased in those with HCC compared to healthy controls. Hierarchical clustering of the metabolite panel separated patients based on the presence of HCC (p < 0.001), but was not able to distinguish between patients with HCC based on the presence of cirrhosis (p = 0.42). CONCLUSIONS: Gut microbiota-derived metabolites were differentially abundant in patients with HCC versus healthy controls. The observed perturbations of the TMAO pathway in HCC seem particularly promising as a target of future research and may have both diagnostic and therapeutic implications.

19.
Front Oncol ; 13: 1110473, 2023.
Article in English | MEDLINE | ID: mdl-37007113

ABSTRACT

In the United States, an individual's access to resources, insurance status, and wealth are critical social determinants that affect both the risk and outcomes of many diseases. One disease for which the correlation with socioeconomic status (SES) is less well-characterized is glioblastoma (GBM), a devastating brain malignancy. The aim of this study was to review the current literature characterizing the relationship between area-level SES and both GBM incidence and prognosis in the United States. A query of multiple databases was performed to identify the existing data on SES and GBM incidence or prognosis. Papers were filtered by relevant terms and topics. A narrative review was then constructed to summarize the current body of knowledge on this topic. We obtained a total of three papers that analyze SES and GBM incidence, which all report a positive correlation between area-level SES and GBM incidence. In addition, we found 14 papers that focus on SES and GBM prognosis, either overall survival or GBM-specific survival. Those studies that analyze data from greater than 1,530 patients report a positive correlation between area-level SES and individual prognosis, while those with smaller study populations report no significant relationship. Our report underlines the strong association between SES and GBM incidence and highlights the need for large study populations to assess SES and GBM prognosis to ideally guide interventions that improve outcomes. Further studies are needed to determine underlying socio-economic stresses on GBM risk and outcomes to identify opportunities for intervention.

20.
Front Oncol ; 13: 1110440, 2023.
Article in English | MEDLINE | ID: mdl-36910642

ABSTRACT

Brain metastases are a significant source of morbidity and mortality in patients with non-small cell lung cancer. Historically, surgery and radiation therapy have been essential to maintaining disease control within the central nervous system due to poorly penetrant conventional chemotherapy. With the advent of targeted therapy against actionable driver mutations, there is potential to control limited and asymptomatic intracranial disease and delay local therapy until progression. In this review paper, intracranial response rates and clinical outcomes to biological and immune therapies are summarized from the literature and appraised to assist clinical decision making and identify areas for further research. Future clinical trials ought to prioritize patient-centered quality of life and neurocognitive measures as major outcomes and specifically stratify patients based on mutational marker status, disease burden, and symptom acuity.

SELECTION OF CITATIONS
SEARCH DETAIL