Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cancer Sci ; 114(9): 3537-3552, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37316683

ABSTRACT

Osteosarcoma (OS), which is a common and aggressive primary bone malignancy, occurs mainly in children and adolescent. Long noncoding RNAs (lncRNAs) are reported to play a pivotal role in various cancers. Here, we found that the lncRNA HOTAIRM1 is upregulated in OS cells and tissues. A set of functional experiments suggested that HOTAIRM1 knockdown attenuated the proliferation and stimulated the apoptosis of OS cells. A subsequent mechanistic study revealed that HOTAIRM1 functions as a competing endogenous RNA to elevate ras homologue enriched in brain (Rheb) expression by sponging miR-664b-3p. Immediately afterward, upregulated Rheb facilitates proliferation and suppresses apoptosis by promoting the mTOR pathway-mediated Warburg effect in OS. In summary, our findings demonstrated that HOTAIRM1 promotes the proliferation and suppresses the apoptosis of OS cells by enhancing the Warburg effect via the miR-664b-3p/Rheb/mTOR axis. Understanding the underlying mechanisms and targeting the HOTAIRM1/miR-664b-3p/Rheb/mTOR axis are essential for OS clinical treatment.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Adolescent , Child , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Osteosarcoma/pathology , Bone Neoplasms/pathology , Cell Proliferation/genetics , Glycolysis/genetics , Gene Expression Regulation, Neoplastic
2.
Cancer Sci ; 114(6): 2345-2359, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36880587

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant neoplasm of the bone. Recent studies have indicated that the inhibitory effects of microRNA (miR)-324-3p could affect the development of numerous cancers. However, its biological roles and underlying mechanisms in OS progression remain unexplored. In this study, miR-324-3p expression was markedly reduced in OS cell lines and tissues. Functionally, miR-324-3p overexpression suppressed OS progression and was involved in the Warburg effect. Mechanistically, miR-324-3p negatively regulated phosphoglycerate mutase 1 (PGAM1) expression by targeting its 3'-UTR. Moreover, high expression of PGAM1 promoted OS progression and aerobic glycolysis, which were associated with inferior overall survival in patients with OS. Notably, the tumor suppressor functions of miR-324-3p were partially recovered by PGAM1 overexpression. In summary, the miR-324-3p/PGAM1 axis plays an important role in regulating OS progression by controlling the Warburg effect. Our results provide mechanistic insights into the function of miR-324-3p in glucose metabolism and subsequently on the progression of OS. Targeting the miR-324-3p/PGAM1 axis could be a promising molecular strategy for the treatment of OS.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , MicroRNAs/metabolism , Osteosarcoma/pathology , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism
3.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904880

ABSTRACT

Anomalous road manhole covers pose a potential risk to road safety in cities. In the development of smart cities, computer vision techniques use deep learning to automatically detect anomalous manhole covers to avoid these risks. One important problem is that a large amount of data are required to train a road anomaly manhole cover detection model. The number of anomalous manhole covers is usually small, which makes it a challenge to create training datasets quickly. To expand the dataset and improve the generalization of the model, researchers usually copy and paste samples from the original data to other data in order to achieve data augmentation. In this paper, we propose a new data augmentation method, which uses data that do not exist in the original dataset as samples to automatically select the pasting position of manhole cover samples and predict the transformation parameters via visual prior experience and perspective transformations, making it more accurately capture the actual shape of manhole covers on a road. Without using other data enhancement processes, our method raises the mean average precision (mAP) by at least 6.8 compared with the baseline model.

4.
Article in English | MEDLINE | ID: mdl-38629359

ABSTRACT

BACKGROUND: Shenfu injection was derived from the classical Chinese medicine formula 'Shenfu decoction', which was widely used in the treatment of cardiovascular and cerebrovascular diseases in clinical practice. OBJECTIVES: Predict the main active ingredients, core targets, and related signaling pathways of Shenfu injection in the treatment of ischemic stroke. METHODS: Databases were used to collect the active ingredients and target information of Shenfu injection; GO and KEGG pathway enrichment analyses were performed using the David database. The effects of Shenfu injection on core targets were verified using molecular docking and in vivo experiments. RESULTS: The predicted results identified 44 active ingredients and 635 targets in Shenfu injection, among which 418 targets, including TNF, IL-6, MAPK1, and MAPK14, were potential targets for the treatment of ischemic stroke. Molecular docking revealed that the active ingredients had good binding to IL-6, MAPK1, and MAPK14. In vivo experiments demonstrated that Shenfu injection significantly improved the pathological damage due to ischemic stroke, promoted the expression of tight junction proteins, and inhibited MMP-2 and MMP-9 expressions, thereby reducing BBB permeability. Animal experiments revealed that Shenfu injection could inhibit p38、JNK and ERK phosphorylation. CONCLUSIONS: Mechanism of Shenfu injection in treating ischemic stroke may be via inhibition of the inflammatory factors levels and protecting the BBB, thereby warranting subsequent studies and highlighting its potential as a reference for new drug development.

5.
Mol Biol Rep ; 40(7): 4397-404, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23645029

ABSTRACT

The interaction between jatrorrhizine (JAT) and bovine serum albumin (BSA) has been studied. The studies were carried out in a buffer medium at pH 7.4 using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling methods. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of BSA-JAT. Binding parameters were determined using the Stern-Volmer equation and Scatchard equation. The results of thermodynamic parameters ΔG, ΔH and ΔS at different temperatures indicate that the electrostatic interactions and hydrogen bonds play a major role for JAT-BSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that JAT is mainly located within the hydrophobic pocket of the subdomain IIIA of BSA. Furthermore, The distance between donor (BSA) and acceptor (JAT) was estimated according to fluorescence resonance energy transfer.


Subject(s)
Berberine/analogs & derivatives , Serum Albumin, Bovine/chemistry , Berberine/chemistry , Berberine/metabolism , Binding Sites , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Conformation , Protein Binding , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Spectrum Analysis , Thermodynamics
6.
Micromachines (Basel) ; 14(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004969

ABSTRACT

Despite the considerable research attention paid to block copolymer (BCP)-toughened epoxy resins, the effects of their terminal groups on their phase structure are not thoroughly understood. This study fills this gap by closely examining the effects of amino and carboxyl groups on the fracture toughness of epoxy resins at different temperatures. Through the combination of scanning electron microscopy and digital image correlation (DIC), it was found that the amino-terminated BCP was capable of forming a stress-distributing network in pure epoxy resin, resulting in better toughening effects at room temperature. In a 60 wt.% silica-filled epoxy composite system, the addition of a carboxyl-terminated BCP showed little toughening effect due to the weaker filler/matrix interface caused by the random dispersion of the microphase of BCPs and distributed silica. The fracture toughness of the epoxy system at high temperatures was not affected by the terminal groups, regardless of the addition of silica. Their dynamic mechanical properties and thermal expansion coefficients are also reported in this article.

7.
Micromachines (Basel) ; 14(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37512629

ABSTRACT

Copper-based nanoinks are emerging as promising low-cost alternatives to widely used silver nanoinks in electronic printing. However, the spontaneous oxidation of copper under ambient conditions poses significant challenges to its broader application. To address this issue, this paper presents an economical, large-scale, and environmentally friendly method for fabricating Cu@Ag nanoparticles (Cu@Ag NPs). The as-prepared nanoparticles exhibit a narrow size distribution of approximately 100 nm and can withstand ambient exposure for at least 60 days without significant oxidation. The Cu@Ag-based ink, with a 60 wt% loading, was screen-printed onto a flexible polyimide substrate and subsequently heat-treated at 290 °C for 15 minutes under a nitrogen atmosphere. The sintered pattern displayed a low electrical resistivity of 25.5 µΩ·cm (approximately 15 times the resistivity of bulk copper) along with excellent reliability and mechanical fatigue strength. The innovative Cu@Ag NPs fabrication method holds considerable potential for advancing large-scale applications of copper-based inks in flexible electronics.

8.
Polymers (Basel) ; 12(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707932

ABSTRACT

Three series of silicone modified polyurethane acrylate (SPUA) prepolymers were prepared from dicyclohexylmethane-4, 4'-diisocyanate (HMDI), PPG1000, triethylene glycol (TEG), 2-hydroxyethyl acrylate (HEA), and multi-hydroxyalkyl silicone (MI-III) with tris(trimethylsiloxy)silyl propyl side groups. Their structures were confirmed by 1H NMR, 13C NMR, and Fourier transformed infrared (FTIR) analysis, and SPUA films were obtained by UV curing. The properties of films were investigated by attenuated total reflection (ATR)-FTIR, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), water contact angle (WCA), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), water and hexane resistance, and tensile testing. The results showed that the structures and dosages of MI-III could influence the polymerization properties, surface properties, water and n-hexane resistance, and thermal and tensile properties of SPUA. For instance, the surface aggregation of tris(trimethylsiloxy)silyl propyl groups (even ~2.5 wt%) could endow SPUA films with less microphase separation, good hydrophobicity, lipophilicity, thermal stability, and mechanical properties. Interestingly, obvious regular winkles appeared on the surfaces of SPUAIII films, which are characterized by relatively high WCA values. However, relatively smooth were observed on the surfaces of SPUAIII films, which also exhibit lower water absorption ratio values. Furthermore, the ordinary cotton textiles would be transformed into hydrophobic and oleophilic textiles after treating with SPUA simply, and they were used in the oil/water separation study. Among them, consistent with water and hexane resistance analysis of SPUA films, SPUAII treated cotton textiles are characterized by relatively small liquid absorption capacity (LAC) values. Thus, phenyl groups and side-chain tris(trimethylsiloxy)silyl propyl groups are helpful to improve the hydrophobicity and lipophilicity of SPUA films. SPUAII-5 (even with 5 wt% MII) treated cotton textiles could efficiently separate the oil/water mixture, such as n-hexane, cyclohexane, or methylbenzene with water. Thus, this material has great potential in the application of hydrophobic treatment, oil/water separation, and industrial sewage emissions, among others.

9.
ACS Appl Mater Interfaces ; 12(44): 49737-49747, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33085473

ABSTRACT

Defect-controlled exfoliation of few-layer transition-metal carbide (f-Ti3C2Tx) MXene was demonstrated by optimizing chemical etching conditions, and electromagnetic interference (EMI) shielding coatings were explored. The structural features such as layer morphology, lateral size, layer thickness, defect density, and mechanical stability of the exfoliated f-Ti3C2Tx were strongly dependent on exfoliation conditions. By selecting appropriate exfoliation conditions, moderate etching time leads to the formation of quality f-Ti3C2Tx with lesser defects, whereas longer etching time can break the layer structure and increase defect density, structural misalignment, and oxidative products of f-Ti3C2Tx. The resultant fabricated free-standing flexible f-Ti3C2Tx films exhibited electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band of about 3669 ± 33 S/m and 31.97 dB, respectively, at a thickness of 6 µm. The large discrepancy in EMI SE performance between quality (31.97 dB) and defected (3.164 dB) f-Ti3C2Tx sheets is attributed to interconnections between f-Ti3C2Tx nanolaminates interrupted by defects and oxidative products, influencing EMI attenuation ability. Furthermore, the demonstrated solution-processable high-quality f-Ti3C2Tx inks are compatible and, when applied for EM barrier coating on various substrates, including paper, cellulose fabric, and PTFE membranes, exhibited significant EMI shielding performance. Moreover, controlling defects in f-Ti3C2Tx and assembly of heterogeneous disordered carbon-loaded TiO2-Ti3C2Tx ternary hybrid nanostructures from f-Ti3C2Tx by tuning etching conditions could play an enormous role in energy and environmental applications.

SELECTION OF CITATIONS
SEARCH DETAIL