Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Exp Cell Res ; 442(1): 114211, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39147261

ABSTRACT

Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via ß-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/ß-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.


Subject(s)
Exosomes , Muscle, Smooth, Vascular , Osteoblasts , Osteocytes , Osteogenesis , beta Catenin , Osteoblasts/metabolism , Osteoblasts/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Exosomes/metabolism , Animals , beta Catenin/metabolism , beta Catenin/genetics , Osteocytes/metabolism , Osteocytes/cytology , Mice , Osteogenesis/genetics , Osteogenesis/physiology , Myocytes, Smooth Muscle/metabolism , Cell Differentiation , Humans , Wnt Signaling Pathway , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Signal Transduction , Mice, Inbred C57BL
2.
Cell Biol Int ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591759

ABSTRACT

During the morphological changes occurring in osteoblast differentiation, Sonic hedgehog (Shh) plays a crucial role. While some progress has been made in understanding this process, the epigenetic mechanisms governing the expression of Hh signaling members in response to bone morphogenetic protein 7 (BMP7) signaling in osteoblasts remain poorly understood. To delve deeper into this issue, we treated pre-osteoblasts (pObs) with 100 ng/mL of BMP7 for up to 21 days. Initially, we validated the osteogenic phenotype by confirming elevated expression of well-defined gene biomarkers, including Runx2, Osterix, Alkaline Phosphatase (Alp), and bone sialoprotein (Bsp). Simultaneously, Hh signaling-related members Sonic (Shh), Indian (Ihh), and Desert (Dhh) Hedgehog (Hh) exhibited nuanced modulation over the 21 days in vitro period. Subsequently, we evaluated epigenetic markers, and our data revealed a notable change in the CpG methylation profile, considering the methylation/hydroxymethylation ratio. CpG methylation is a reversible process regulated by DNA methyltransferases and demethylases, including Ten-eleven translocation (Tets), which also exhibited changes during the acquisition of the osteogenic phenotype. Specifically, we measured the methylation pattern of Shh-related genes and demonstrated a positive Pearson correlation for GLI Family Zinc Finger 1 (Gli1) and Patched (Ptch1). This data underscores the significance of the epigenetic machinery in modulating the BMP7-induced osteogenic phenotype by influencing the activity of Shh-related genes. In conclusion, this study highlights the positive impact of epigenetic control on the expression of genes related to hedgehog signaling during the morphogenetic changes induced by BMP7 signaling in osteoblasts.

3.
Cell Biol Int ; 48(5): 665-681, 2024 May.
Article in English | MEDLINE | ID: mdl-38420868

ABSTRACT

Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.


Subject(s)
Epigenesis, Genetic , Histones , Humans , Histones/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hemodynamics , Stress, Mechanical , Cells, Cultured
4.
Oral Dis ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37994179

ABSTRACT

BACKGROUND: Here, we evaluated whether the histone lysine demethylase 5B (JARID1B), is involved in osteogenic phenotype commitment of periodontal ligament cells (PDLCs), by considering their heterogeneity for osteoblast differentiation. MATERIALS AND METHODS: Epigenetic, transcriptional, and protein levels of a gene set, involved in the osteogenesis, were investigated by performing genome-wide DNA (hydroxy)methylation, mRNA expression, and western blotting analysis at basal (without osteogenic induction), and at the 3rd and 10th days of osteogenic stimulus, in vitro, using PDLCs with low (l) and high (h) osteogenic potential as biological models. RESULTS: h-PDLCs showed reduced levels of JARID1B, compared to l-PDLCs, with significant inversely proportional correlations between RUNX2 and RUNX2/p57. Epigenetically, a significant reduction in the global H3K4me3 content was observed only in h-PDLCs. Immunoblotting data reveal a significant reduction in the global H3K4me3 content, at 3 days of induction only in h-PDLCs, while an increase in the global H3K4me3 content was observed at 10 days for both PDLCs. Additionally, positive correlations were found between global H3K4me3 levels and JARID1B gene expression. CONCLUSIONS: Altogether, our results show the crucial role of JARID1B in repressing PDLCs osteogenic phenotype and this claims to pre-clinical protocols proposing JARID1B as a potential therapeutic target.

5.
Dev Biol ; 470: 37-48, 2021 02.
Article in English | MEDLINE | ID: mdl-33152274

ABSTRACT

Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential. Moreover, we evaluated miRs and genes that encode enzymes to process miRs and their biogenesis. Our data show the high expression of the XPO5 gene, and miRs 7 and 22 observed in the l-PDLCs might be involved in acquiring osteogenic potential, suppressing RUNX2 gene expression. Further, an inversely proportional correlation between lncRNAs (HOTAIR and HOTTIP) and RUNX2 gene expression was observed in both l- and h-PDLCs, and it was also related to the distinct osteogenic phenotypes. Thus, our results indicate the low expression of XPO5 in h-PDLC might be the limiting point for blocking the miRs biogenesis, allowing the high gene expression of RUNX2. In accordance, the low expression of miRs, HOTAIR, and HOTTIP could be a prerequisite for increased osteogenic potential in h-PDLCs. These results will help us to better understand the underlying mechanisms of osteogenesis, considering the heterogeneity in the osteogenic potential of PDLCs that might be related to a distinct transcriptional profile of lncRNAs and the biogenesis machinery.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , Mesenchymal Stem Cells/physiology , MicroRNAs/metabolism , Osteogenesis , Periodontal Ligament/cytology , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , MicroRNAs/genetics , Periodontal Ligament/metabolism , Phenotype , RNA, Long Noncoding/genetics , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription, Genetic , Transcriptome , Young Adult
6.
J Cell Physiol ; 235(5): 4631-4642, 2020 05.
Article in English | MEDLINE | ID: mdl-31637716

ABSTRACT

To better address whether the long noncoding RNAs (lncRNAs) HOTAIR and HOTTIP are mechanosensitive genes, they were investigated in differentially challenged endothelial cells with respect to a circuit of tensional forces, considering the performance of both arterial and venous endothelial cells. We subjected arterial- and venous-obtained endothelial cells to a circuit of tensional forces within a shear stress model in vitro. Real-time quantitative polymerase chain reaction analysis indicated that microRNA (miRNA)-related processing machinery is significantly required in shear stressed arterial endothelial cell metabolism, which orchestrates miRNA (small noncoding RNA) involvement, and their involvement suggests lncRNA involvement. Of lncRNAs HOTAIR and HOTTIP, only HOTAIR was mechanosensitive considering both arterial and venous endothelial cells, presenting a positive correlation between methylation signature and gene expression. Thereafter, using bioinformatics tools, lncRNA HOTAIR was predicted to modulate miRNA185, miRNA-21, and miRNA23b downregulation. We compared the values of gene expression with a Pearson's correlation test, and expected correlations were observed for miRNA185 (r = 0.8664), miRNA-21 (r = 0.8605), and miRNA23b (0.9128). Taken together, these findings clearly show that lncRNA HOTAIR responds to the shear stress and emerges as a novel mechanosensitive gene in endothelial cells. Altogether, this understanding of mechanosensitive transcriptional and posttranscriptional control involving HOTAIR can also lead to new forms of therapeutic intervention for various diseases, as well as new strategies for tissue engineering and regenerative medicine.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Mechanotransduction, Cellular , RNA, Long Noncoding/metabolism , Cells, Cultured , DNA Methylation , Epigenesis, Genetic , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Stress, Mechanical
7.
J Cell Physiol ; 235(6): 5256-5269, 2020 06.
Article in English | MEDLINE | ID: mdl-31858593

ABSTRACT

Modifications on shear stress-based mechanical forces are associated with pathophysiological susceptibility and their effect on endothelial cells (EC) needs to be better addressed looking for comprehending the cellular and molecular mechanisms. This prompted us to better evaluate the effects of shear stress in human primary venous EC obtained from the umbilical cord, using an in vitro model to mimic the laminar blood flow, reaching an intensity 1-4 Pa. First, our data shows there is a significant up-expression of phosphatidylinositol 3-kinase (PI3K) in shear-stressed cells culminating downstream with an up-phosphorylation of AKT and up-expression of MAPK-ERK, concomitant to a dynamic cytoskeleton rearrangement upon integrin subunits (α4 and ß 3) requirements. Importantly, the results show there is significant involvement of nitric oxide synthase (eNOS), nNOS, and vascular endothelial growth factors receptor 2 (VEGFR2) in shear-stressed EC, while cell cycle-related events seem to being changed. Additionally, although diminution of 5-hydroxymethylcytosine in shear-stressed EC, suggesting a global repression of genes transcription, the promoters of PI3K and eNOS genes were significantly hydroxymethylated corroborating with their respective transcriptional profiles. Finally, to better address, the pivotal role of PI3K in shear-stressed EC we have revisited these biological issues by wortmannin targeting PI3K signaling and the data shows a dependency of PI3K signaling in controlling the expression of VGFR1, VGFR2, VEGF, and eNOS, once these genes were significantly suppressed in the presence of the inhibitor, as well as transcripts from Ki67 and CDK2 genes. Finally, our data still shows a coupling between PI3K and the epigenetic landscape of shear-stressed cells, once wortmannin promotes a significant suppression of ten-11 translocation 1 (TET1), TET2, and TET3 genes, evidencing that PI3K signaling is a necessary upstream pathway to modulate TET-related genes. In this study we determined the major mechanotransduction pathway by which blood flow driven shear stress activates PI3K which plays a pivotal role on guaranteeing endothelial cell phenotype and vascular homeostasis, opening novel perspectives to understand the molecular basis of pathophysiological disorders related with the vascular system.


Subject(s)
Mechanotransduction, Cellular/genetics , Nitric Oxide Synthase/genetics , Phosphatidylinositol 3-Kinase/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Wortmannin/pharmacology , Angiogenesis Inducing Agents/pharmacology , DNA-Binding Proteins , Dioxygenases , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Mechanotransduction, Cellular/drug effects , Mixed Function Oxygenases , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type III/genetics , Phosphatidylinositol 3-Kinase/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins , Proto-Oncogene Proteins c-akt/genetics , Shear Strength/drug effects , Signal Transduction/drug effects , Stress, Mechanical , Vascular Endothelial Growth Factor Receptor-2/genetics
8.
Langmuir ; 36(30): 8723-8732, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32643936

ABSTRACT

A simple method for immobilization of the chemotherapy drug paclitaxel (PTX) on hydroxyapatite nanoparticles (n-HAP) using the biopolymer chitosan as a trapping agent is described focusing on applications involving breast cancer cells. n-HAP with two distinct crystallinity profiles were used: with predominant crystallization along the long axis and with a more homogeneous crystallization in all directions. In the first scenario, the interactions between chitosan and both the OH and PO43- groups on the surface of the nanoparticles are favored and lead to a more efficient attachment of the drug. In this case, PTX is found to remain mostly attached to the n-HAP for at least 24 h, while being dispersed in aqueous solution. During this time, the activity of the drug is inhibited as corroborated by in vitro assays with breast cancer cells. With that, the in vitro experiments revealed distinct effects from the drug-loaded nanoparticles on the cells depending on the experimental conditions. In a short term, that is, in 24 h, the cells exhibit higher viability than those challenged with nonloaded materials. Nevertheless, after 72 h, even a small content of PTX in the presence of n-HAP can reduce the cells' viability via stimulation of the apoptotic phenotype and suppression of survival stimuli.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Breast Neoplasms/drug therapy , Cell Survival , Durapatite , Female , Humans , Paclitaxel/pharmacology
9.
J Cell Physiol ; 234(5): 6382-6396, 2019 05.
Article in English | MEDLINE | ID: mdl-30238981

ABSTRACT

Whereas endothelial responses to shear stress are well-characterized, the cell physiological effects of shear stress in smooth muscle cells (SMCs) remain largely obscure. As SMCs are directly challenged by shear stress after endothelial denuding injury following procedures such as angioplasty or endarterectomy, characterization of these responses represents an important scientific question. Hence we decided to contrast cytoskeletal reorganization, epigenetic reprogramming, signaling transduction, and changes in miRNA (miRs) profiles in primary human aortic smooth muscle cells (AoSMCs) between unstressed cells and cells exposed to shear stress. We observed that shear stress-provoked reorganization of the actin cytoskeleton in an apparently Cofilin-dependent fashion and which related to altered integrin signaling, apparently caused by remodeling of the extracellular matrix. The latter appeared a downstream effect of increased expression of matrix metalloproteinases and downregulation of tissue metalloproteinase inhibitor 1 (TIMP1) protein levels. In turn, these effects related to shear stress-provoked changes in expression and nuclear localization of the epigenetic regulators demethylases TET1, TET2, DNMT1, DNMT3A and DNMT3B, HDAC6, and SIRT1. Accordingly, TIMP1 promotor CpG hypomethylation was a prominent effect, and resulted in a significant increase in TIMP1 transcription, which may also have related increased expression of miRs involved in modulating TIMP1 translation. Thus epigenetic-reprogramming of TIMP1 emerges as critical element in smooth muscle responses to mechanical signals and as epigenetic machinery is amendable to pharmacological manipulation, this pathway may have important clinical consequences.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptation, Physiological/physiology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cell Line , Epigenesis, Genetic , Humans , Stress, Mechanical
10.
J Cell Physiol ; 234(3): 2984-2996, 2019 03.
Article in English | MEDLINE | ID: mdl-30058720

ABSTRACT

The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.


Subject(s)
Bone Regeneration/genetics , Extracellular Matrix/genetics , Osteogenesis/genetics , Phosphotransferases/genetics , Bone and Bones/drug effects , Bone and Bones/metabolism , Cell Adhesion/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Tissue Engineering , Titanium/pharmacology
11.
J Cell Physiol ; 234(7): 11287-11303, 2019 07.
Article in English | MEDLINE | ID: mdl-30565700

ABSTRACT

Shear stress changes are associated with a repertory of signaling cascade modulating vascular phenotype. As shear stress-related tensional forces might be associated with pathophysiological susceptibility, a more comprehensive molecular map needs to be addressed. Thus, we subjected human umbilical vein endothelial cells (HUVECs) to a circuit of different tensional forces in vitro considering the following three groups: (a) physiological blood flow shear stress condition (named Normo), (b) a hypertensive blood flow shear stress (named Hyper), and (c) these hyper-stressed cells were returned to Normo condition (named Return). The samples were properly collected to allow different methodologies analysis. Our data showed a pivotal involvement of c-Src on driving the mechanotransduction cascade by modulating signaling related with adhesion, survival (PI3K/Akt) and proliferative phenotype. Moreover, c-Src seems to develop important role during extracellular matrix remodeling. Additionally, proteomic analysis showed strong involvement of heat shock protein 70 (HSP70) in the hypertensive-stressed cells; it being significantly decreased in return phenotype. This result prompted us to investigate 20S proteasome as an intracellular proteolytic alternative route to promote the turnover of those proteins. Surprisingly, our data reveled significant overexpression of sets of proteasome subunit α-type (PSMA) and ß-type (PSMB) genes. In conjunction, our data showed c-Src as a pivotal protein to drive mechanotransduction in endothelial cells in a HSP70-dependent turnover scenario. Because shear patterns is associated with pathophysiological changes, such as atherosclerosis and hypertension, these results paved new road to understand the molecular mechanism on driving mechanotransduction in endothelial cells and, if drugable, these targets must be considered within pharmacological treatment optimization.


Subject(s)
CSK Tyrosine-Protein Kinase/metabolism , HSP70 Heat-Shock Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mechanotransduction, Cellular/physiology , Regional Blood Flow/physiology , Cell Adhesion/physiology , Cells, Cultured , Hemodynamics/physiology , Humans , Hypertension/physiopathology , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/physiology , Stress, Mechanical , Stress, Physiological/physiology
12.
J Cell Physiol ; 234(4): 4140-4153, 2019 04.
Article in English | MEDLINE | ID: mdl-30171612

ABSTRACT

The role of apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) in bone healing remains to be understood. To address this issue, we investigated the requirement of inflammasome-related genes in response to bone morphogenetic protein 7 (BMP7)-induced osteoblast differentiation in vitro. To validate the importance of ASC on osteogenesis, we subjected wild-type (WT) and ASC knockout C57BL/6 mice (ASC KO) to tibia defect to evaluate the bone healing process (up to 28 days). Our in vitro data showed that there is an involvement of ASC during BMP7-induced osteoblast differentiation, concomitant to osteogenic biomarker expression. Indeed, primary osteogenic cells from ASC KO presented a lower osteogenic profile than those obtained from WT mice. To validate this hypothesis, we evaluated the bone healing process of tibia defects on both WT and ASC KO mice genotypes and the ASC KO mice were not able to fully heal tibia defects up to 28 days, whereas WT tibia defects presented a higher bone de novo volume at this stage, evidencing ASC as an important molecule during osteogenic phenotype. In addition, we have shown a higher involvement of runt-related transcription factor 2 in WT sections during bone repair, as well as circulating bone alkaline phosphatase isoform when both were compared with ASC KO mice behavior. Altogether, our results showed for the first time the involvement of inflammasome during osteoblast differentiation and osteogenesis, which opens new avenues to understand the pathways involved in bone healing.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Cell Differentiation , Fracture Healing , Osteoblasts/metabolism , Osteogenesis , Tibia/metabolism , Tibial Fractures/metabolism , 3T3 Cells , Animals , Bone Morphogenetic Protein 7/pharmacology , CARD Signaling Adaptor Proteins/deficiency , CARD Signaling Adaptor Proteins/genetics , Cell Differentiation/drug effects , Disease Models, Animal , Female , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/drug effects , Osteoblasts/pathology , Osteogenesis/drug effects , Signal Transduction , Tibia/pathology , Tibia/physiopathology , Tibial Fractures/genetics , Tibial Fractures/pathology , Tibial Fractures/physiopathology , Time Factors
13.
J Cell Biochem ; 120(8): 13413-13425, 2019 08.
Article in English | MEDLINE | ID: mdl-30916831

ABSTRACT

Natural molecules, such as flavonoid, are very welcome strategies to modulate bone turnover. This prompted us to comprehend better the effect of silibinin on osteoblast metabolism, mainly considering intracellular pathways able to drive cell adhesion to differentiation. By exploring in vitro approaches, our data show a modulatory effect of the silibinin (200 µg/mL) on the osteoblast intracellular signaling, contributing with decisive pathways governing cell adhesion, differentiation, and further mineralization, recapitulating important stages of osteogenesis. Within the first 24 hours of adhesion (acute stage), osteoblasts respond to silibinin by rearranging their cytoskeleton and start mechanisms responsible to extracellular matrix (ECM) remodeling, which reach intense profile at 28 days of treatment (chronic stage) by favoring matrix metalloproteinases (MMPs-2, and -9) activities, concomitant to mineralizing phenotype. Importantly, silibinin seems to reprogram genes related to inflammatory landscape and significantly upmodulating osteoprotegerin (>25 fold-changes), signaling molecule involved with osteoclastogenesis. Altogether, our results show for the first time that silibinin drives in vitro osteoblast differentiation by requiring specific intracellular signaling. In conjunction, this molecular landscape contributes to understand the effect of silibinin on osteoblasts performance and open novel therapeutic possibilities to silibinin in bone disorders, such as osteoporosis.


Subject(s)
Inflammation/drug therapy , Osteogenesis/drug effects , Osteoporosis/drug therapy , Silybin/pharmacology , Animals , Bone Remodeling/drug effects , Bone Remodeling/genetics , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Extracellular Matrix/drug effects , Humans , Inflammation/genetics , Inflammation/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice , Osteoblasts/drug effects , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/pathology , Phenotype , Signal Transduction/drug effects
14.
J Mater Sci Mater Med ; 29(4): 41, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29582191

ABSTRACT

The biological response to zirconia (ZrO2) is not completely understood, which prompted us to address its effect on pre-osteoblastic cells in both direct and indirect manner. Our results showed that zirconia triggers important intracellular signaling mainly by governing survival signals which leads to cell adhesion and proliferation by modulating signaling cascade responsible for dynamic cytoskeleton rearrangement, as observed by fluorescence microscopy. The phosphorylations of Focal Adhesion Kinase (FAK) and Rac1 decreased in response to ZrO2 enriched medium. This corroborates the result of the crystal violet assay, which indicated a significant decrease of pre-osteoblast adhesion in responding to ZrO2 enriched medium. However, we credit this decrease on pre-osteoblast adhesion to the need to govern intracellular repertory of intracellular pathways involved with cell cycle progression, because we found a significant up-phosphorylation of Mitogen-Activated Protein Kinase (MAPK)-p38 and Cyclin-dependent kinase 2 (CDK2), while p15 (a cell cycle suppressor) decreased. Importantly, Protein phosphatase 2 A (PP2A) activity decreased, guaranteeing the significant up-phosphorylation of MAPK -p38 in response to ZrO2 enriched medium. Complementarily, there was a regulation of Matrix Metalloproteinases (MMPs) in response to Zirconia and this remodeling could affect cell phenotype by interfering on cell anchorage. Altogether, our results show a repertory of signaling molecules, which suggests that ECM remodel as a pre-requisite to pre-osteoblast phenotype by affecting their anchoring in responding to zirconia.


Subject(s)
Cell Adhesion/physiology , Cell Proliferation/physiology , Extracellular Matrix/physiology , Osteoblasts/physiology , Zirconium/chemistry , 3T3 Cells , Animals , Cell Survival , Mice , Signal Transduction , Tissue Scaffolds
15.
Biotechnol Bioeng ; 114(8): 1888-1898, 2017 08.
Article in English | MEDLINE | ID: mdl-28401535

ABSTRACT

Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation up to 10 days, when alkaline phosphatase (ALP) activity and osteogenic transcription factors were up-modulated. Altogether, our results showed for the first time that nano hydroxyapatite-blasted titanium surface promotes crucial intracellular signaling network responsible for cell adapting on the Ti-surface.Biotechnol. Bioeng. 2017;114: 1888-1898. © 2017 Wiley Periodicals, Inc.


Subject(s)
Cell Size , Durapatite/chemistry , Nanoparticles/chemistry , Osteoblasts/cytology , Osteoblasts/physiology , Osteogenesis/physiology , 3T3 Cells , Animals , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Coated Materials, Biocompatible/chemistry , Materials Testing , Mice , Signal Transduction/physiology , Surface Properties , Titanium
16.
Mol Cell Biochem ; 436(1-2): 111-117, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28578539

ABSTRACT

We hypothesized that a crosstalk between osteoblast and fibroblast (FB) exists, which contributes to bone as a dynamic tissue. Cell-free supernatants were harvested from fibroblast cultures and later subject pre-osteoblasts to investigate there capacity to modulate cell viability and differentiation mechanisms, reporting the possible involvement of Shh signaling as a paracrine mechanism. By exploring immunoblotting technology, we have shown that FB-released factors interfere with osteoblast metabolism by up-regulating the phosphorylation of FAK and Rac-1 proteins at the early stage and later contribute to osteoblast differentiation by up-modulating alkaline phosphatase (ALP) and in vitro mineralization. We also found that Shh signaling was not required during osteoblastic differentiation promoted by the FB-released factors as well as MAPK-ERK phosphorylation, while pre-osteoblast cultures subjected to osteogenic medium (O.M.) require downstream transducers of Shh, such as Patched and Gli-1, and MAPK-ERK. Altogether, our results indicate for the first time a possible mechanism involved in the crosstalk between fibroblasts and osteoblasts, as it was possible to observe trophic factors released by fibroblasts interfering decisively in osteoblast metabolism in a Shh-independent manner. This study collaborates the body of work that indicates paracrine signaling molecules participate in the crosstalk among bone-resident cells and explains, at least partially, the biological mechanisms responsible for bone tissue dynamism, opening new avenues to understand etiologies of bone diseases.


Subject(s)
Calcification, Physiologic , Cell Differentiation , Fibroblasts/metabolism , Hedgehog Proteins/metabolism , MAP Kinase Signaling System/physiology , Osteoblasts/metabolism , Paracrine Communication , Animals , Coculture Techniques , Fibroblasts/cytology , Mice , NIH 3T3 Cells , Osteoblasts/cytology
17.
J Adhes Dent ; 19(5): 401-408, 2017.
Article in English | MEDLINE | ID: mdl-29152618

ABSTRACT

PURPOSE: To examine the effect of mechanical fatigue on the bond strength of resin composite cemented to silica-coated yttria-tetragonal zirconia polycrystal ceramic (Y-TZP). MATERIALS AND METHODS: Ten Y-TZP blocks were polished down to 600-grit silicon carbide paper. Specimens were silica coated by airborne-particle abrasion with 30-µm silica-modified Al2O3 particles. Blocks were cleaned in an ultrasonic bath, and a dental adhesive was applied and light cured for 20 s. Pre-cured composite blocks were luted to treated Y-TZP surfaces with a dual-curing resin cement. Half of the samples (n = 5) were subjected to mechanical fatigue before trimming (fatigue group) and the other half tested 24 h after bonding procedures (control group). Forty-five beam-shaped samples with an approximately 1 mm2 cross-sectional area were prepared for each group and tested in microtensile mode at 0.5 mm/min. Fractographic analysis was performed by optical and scanning electron microscopy. Only specimens that failed at the interface area were considered for statistical analysis. Weibull distribution (95% confidence bounds) was used to determine the characteristic strength (σ0 in MPa) and Weibull modulus (m) for each group. Probability of survival was calculated over the range of loads until specimens failed. RESULTS: The control group showed σ0 = 45.91 MPa and m = 7.98, and the fatigue group σ0 = 43.94 MPa and m = 6.44 (p > 0.05). The probability of survival did not differ significantly between groups. CONCLUSIONS: Fatigue did not affect the bond strength between silica-treated Y-TZP intaglio surfaces and composite cement under these experimental conditions.


Subject(s)
Dental Bonding , Dental Stress Analysis , Aluminum Oxide , Dental Cements , Materials Testing , Microscopy, Electron, Scanning , Resin Cements , Stress, Mechanical , Surface Properties , Zirconium
18.
J Cell Biochem ; 115(6): 1063-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24123071

ABSTRACT

Reactive oxygen species (ROS) modulate a variety of intracellular events, but their role in osteoblast adhesion and spreading remains unclear. ROS is a very-known physiological modulators of Protein Tyrosine Phosphatases activities, mainly to low molecular weight protein tyrosine phosphatase (LMW-PTP) activity. As this biological mechanism is not clear in osteoblast adhesion, we decided to investigate ROS levels and phosphorylations of FAK and Src, identifying these proteins as potential substrates to LMW-PTP activity. Our results showed that during osteoblast adhesion/spreading (30 min and 2 h of seeding) the intracellular ROS content (hydrogen peroxide) is finely regulated by an effective anti-oxidant system [catalase and Superoxide Dismutase (SOD) activities were evaluated]. During the first 30 min of adhesion, there was an increase in ROS production and a concomitant increase in focal adhesion kinase (FAK) activity after its phosphorylation at Tyrosine 397 (Y397 ). Moreover, after 2 h there was a decrease in ROS content and FAK phosphorylation. There was no significant change in LMW-PTP expression at 30 min or 2 h. In order to validate our hypothesis that LMW-PTP is able to control FAK activity by modulating its phosphorylation status, we decided to overexpress and silence LMW-PTP in this context. Our results showed that FAK phosphorylation at Y397 was increased and decreased in osteoblasts with silenced or overexpressed LMW-PTP, respectively. Together, these data show that ROS modulate FAK phosphorylation by an indirect way, suggesting that a LMW-PTP/FAK supra-molecular complex is involved in transient responses during osteoblast adhesion and spreading.


Subject(s)
Osteoblasts/metabolism , Protein Tyrosine Phosphatases/metabolism , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species/metabolism , Animals , Catalase/metabolism , Cell Adhesion , Cell Line , Flow Cytometry , Focal Adhesion Kinase 1/metabolism , Hydrogen Peroxide/metabolism , Immunoblotting , Kinetics , Mice , Microscopy, Confocal , Osteoblasts/cytology , Phosphorylation , Protein Tyrosine Phosphatases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins pp60(c-src)/metabolism , RNA Interference , Superoxide Dismutase/metabolism , Time Factors , Tyrosine/metabolism
19.
J Trace Elem Med Biol ; 81: 127337, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000168

ABSTRACT

BACKGROUND: The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure. METHODS: In this study, EC cultures were subjected to shear stress while being exposed to zirconia for up to 3 days. The conditioned medium obtained from these cultures was then used to expose osteoblasts for a duration of 7 days. To investigate the effects of zirconia on osteoblasts, we examined the expression of genes associated with osteoblast differentiation, including Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Additionally, we assessed the impact of mechanosignaling-related angiocrine factors on extracellular matrix (ECM) remodeling by measuring the activities of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) during the acquisition of the osteogenic phenotype, which precedes mineralization. RESULTS: Our data revealed that mechanosignaling-related angiocrine factors play a crucial role in promoting an osteoblastic phenotype in response to zirconia exposure. Specifically, exposed osteoblasts exhibited significantly higher expression levels of genes associated with osteoblast differentiation, such as Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Furthermore, the activities of MMP2 and MMP9, which are involved in ECM remodeling, were modulated by mechanosignaling-related angiocrine factors. This modulation is likely an initial event preceding the mineralization phase. CONCLUSION: Based on our findings, we propose that mechanosignaling drives the release of angiocrine factors capable of modulating the osteogenic phenotype at the biointerface with zirconia. This process creates a microenvironment that promotes wound healing and osseointegration. Moreover, these results highlight the importance of considering the mechanosignaling of endothelial cells in the modulation of bone healing and osseointegration in the context of blood vessel effects. Our data provide new insights and open avenues for further investigation into the influence of mechanosignaling on bone healing and the osseointegration of dental devices.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Endothelial Cells , Osteocalcin/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/pharmacology , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Integrin-Binding Sialoprotein/pharmacology , Endothelial Cells/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Phenotype , Cell Differentiation , Osteoblasts/metabolism , Titanium/pharmacology , Surface Properties
20.
J Biomed Mater Res B Appl Biomater ; 112(2): e35389, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356168

ABSTRACT

Advances in methodologies to evaluate biomaterials brought an explosive growth of data, ensuing computational challenges to better analyzing them and allowing for high-throughput profiling of biological systems cost-efficiently. In this sense, we have applied bioinformatics tools to better understand the biological effect of different sintering temperatures of hydroxyapatite (abbreviated HA; at 1100, 1150, and 1250°C) on osteoblast performance. To do, we have better analyzed an earlier deposited study, in which the access code is E-MTAB-7219, which the authors have explored different in silico tools on this purpose. In this study, differential gene expression analyses were performed using the gene set variation analysis (GSVA) algorithm from the transcriptomes respecting the thermal changes of HA, which were validated using exclusively in vitro strategies. Furthermore, in silico approaches elected biomarkers during cell behavior in response to different sintering temperatures of HA, and it was further validated using cell culture and qPCR technologies. Altogether, the combination of those strategies shows the capacity of sintered HA at 1250°C to present a better performance in organizing an adequate microenvironment favoring bone regeneration, angiogenesis and material resorption stimulus once it has promoted higher involvement of genes such as CDK2, CDK4 (biomarkers of cell proliferation), p15, Osterix gene (related with osteogenic differentiation), RANKL (related with osteoclastogenesis), VEGF gene (related with angiogenesis), and HIF1α (related with hypoxia microenvironment). Altogether, the combination of in silico and cell culture strategies shows the capacity of sintered HA at 1250°C in guaranteeing osteoblast differentiation and it can be related in organizing an adequate microenvironment favoring bone regeneration, angiogenesis, and material resorption stimulus.


Subject(s)
Biocompatible Materials , Durapatite , Biocompatible Materials/pharmacology , Durapatite/pharmacology , Temperature , Osteogenesis , Cell Proliferation , Cell Culture Techniques , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL