Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(27): e2122050119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35763571

ABSTRACT

AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)-infected patients. In particular, non-Hodgkin's lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1-infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1-infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.


Subject(s)
B-Lymphocytes , HIV Antigens , HIV-1 , Lymphoma, AIDS-Related , gag Gene Products, Human Immunodeficiency Virus , B-Lymphocytes/virology , Genetic Variation , HIV Antigens/genetics , HIV-1/genetics , HIV-1/isolation & purification , Humans , Lymphoma, AIDS-Related/epidemiology , Lymphoma, AIDS-Related/virology , Prevalence , Retrospective Studies , gag Gene Products, Human Immunodeficiency Virus/genetics
2.
J Gen Virol ; 105(4)2024 04.
Article in English | MEDLINE | ID: mdl-38687324

ABSTRACT

HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.


Subject(s)
HIV Antigens , HIV-1 , Oncogene Proteins , Recombination, Genetic , gag Gene Products, Human Immunodeficiency Virus , HIV Antigens/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , Oncogene Proteins/genetics , Mutation , Genetic Variation , HIV-1/genetics , Cell Line, Tumor , Humans , Sequence Alignment
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372148

ABSTRACT

The HIV-1 matrix protein p17 (p17) is a pleiotropic molecule impacting on different cell types. Its interaction with many cellular proteins underlines the importance of the viral protein as a major determinant of human specific adaptation. We previously showed the proangiogenic capability of p17. Here, by integrating functional analysis and receptor binding, we identify a functional epitope that displays molecular mimicry with human erythropoietin (EPO) and promotes angiogenesis through common beta chain receptor (ßCR) activation. The functional EPO-like epitope was found to be present in the matrix protein of HIV-1 ancestors SIV originated in chimpanzees (SIVcpz) and gorillas (SIVgor) but not in that of HIV-2 and its ancestor SIVsmm from sooty mangabeys. According to biological data, evolution of the EPO-like epitope showed a clear differentiation between HIV-1/SIVcpz-gor and HIV-2/SIVsmm branches, thus highlighting this epitope on p17 as a divergent signature discriminating HIV-1 and HIV-2 ancestors. P17 is known to enhance HIV-1 replication. Similarly to other ßCR ligands, p17 is capable of attracting and activating HIV-1 target cells and promoting a proinflammatory microenvironment. Thus, it is tempting to speculate that acquisition of an epitope on the matrix proteins of HIV-1 ancestors capable of triggering ßCR may have represented a critical step to enhance viral aggressiveness and early human-to-human SIVcpz/gor dissemination. The hypothesis that the p17/ßCR interaction and ßCR abnormal stimulation may also play a role in sustaining chronic activation and inflammation, thus marking the difference between HIV-1 and HIV-2 in term of pathogenicity, needs further investigation.


Subject(s)
Erythropoietin/genetics , HIV Antigens/metabolism , HIV-1/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Cells, Cultured , Epitopes/immunology , Erythropoietin/metabolism , Evolution, Molecular , HIV Antigens/genetics , HIV Seropositivity , HIV-1/genetics , HIV-2 , Humans , Molecular Mimicry , Simian Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/genetics
4.
New Microbiol ; 46(1): 60-64, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36853820

ABSTRACT

In this study we evaluated the antiviral activity of the Silver Barrier® disinfectant against SARSCoV-2. Silver Barrier® showed time- and concentration-dependent antiviral activity against SARSCoV-2. After 5 min contact time, Silver Barrier® at 0.002% showed a strong inhibitory effect (p<0.001), with a 2-fold reduction of viral genome copy numbers, and a robust suppression (94%) of SARS-CoV-2 infectivity. Considering the effects obtained in solution and within a very short time, Silver Barrier® stands as an excellent new candidate for the disinfection of work environments, especially at the healthcare level, where there are people at high risk of serious illnesses.


Subject(s)
COVID-19 , Disinfectants , Humans , SARS-CoV-2 , Disinfectants/pharmacology , COVID-19/prevention & control , Silver/pharmacology , Antiviral Agents/pharmacology
5.
Eur J Neurosci ; 54(7): 6553-6574, 2021 10.
Article in English | MEDLINE | ID: mdl-34486754

ABSTRACT

N40 is a well-known component of evoked potentials with respect to the auditory and somatosensory modality but not much recognized with regard to the visual modality. To be detected with event-related potentials (ERPs), it requires an optimal signal-to-noise ratio. To investigate the nature of visual N40, we recorded EEG/ERP signals from 20 participants. Each of them was presented with 1800 spatial frequency gratings of 0.75, 1.5, 3 and 6 c/deg. Data were collected from 128 sites while participants were engaged in both passive viewing and attention conditions. N40 (30-55 ms) was modulated by alertness and selective attention; in fact, it was larger to targets than irrelevant and passively viewed spatial frequency gratings. Its strongest intracranial sources were the bilateral thalamic nuclei of pulvinar, according to swLORETA. The active network included precuneus, insula and inferior parietal lobule. An N80 component (60-90 ms) was also identified, which was larger to targets than irrelevant/passive stimuli and more negative to high than low spatial frequencies. In contrast, N40 was not sensitive to spatial frequency per se, nor did it show a polarity inversion as a function of spatial frequency. Attention, alertness and spatial frequency effects were also found for the later components P1, N2 and P300. The attentional effects increased in magnitude over time. The data showed that ERPs can pick up the earliest synchronized activity, deriving in part from thalamic nuclei, before the visual information has actually reached the occipital cortex.


Subject(s)
Evoked Potentials, Visual , Scalp , Attention , Electroencephalography , Evoked Potentials , Evoked Potentials, Auditory , Humans , Photic Stimulation
6.
J Med Virol ; 93(3): 1780-1785, 2021 03.
Article in English | MEDLINE | ID: mdl-32926453

ABSTRACT

In early 2020 the new respiratory syndrome COVID-19 (caused by the zoonotic SARS-CoV-2 virus) spread like a pandemic, starting from Wuhan, China, causing severe economic depression. Despite some advances in drug treatments of medical complications in the later stages of the disease, the pandemic's death toll is tragic, as no vaccine or specific antiviral treatment is currently available. By using a systems approach, we identify the host-encoded pathway, which provides ribonucleotides to viral RNA synthesis, as a possible target. We show that methotrexate, an FDA-approved inhibitor of purine biosynthesis, potently inhibits viral RNA replication, viral protein synthesis, and virus release. The effective antiviral methotrexate concentrations are similar to those used for established human therapies using the same drug. Methotrexate should be most effective in patients at the earliest appearance of symptoms to effectively prevent viral replication, diffusion of the infection, and possibly fatal complications.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/etiology , Methotrexate/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Pandemics/prevention & control , RNA, Viral/genetics , Vero Cells
7.
J Transl Med ; 18(1): 362, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32967693

ABSTRACT

BACKGROUND: Since the first outbreak of SARS-CoV-2, the clinical characteristics of the Coronavirus Disease 2019 (COVID-19) have been progressively changed. Data reporting a viral intra-host and inter-host evolution favouring the appearance of mild SARS-CoV-2 strains are since being accumulating. To better understand the evolution of SARS-CoV-2 pathogenicity and its adaptation to the host, it is therefore crucial to investigate the genetic and phenotypic characteristics of SARS-CoV-2 strains circulating lately in the epidemic. METHODS: Nasopharyngeal swabs have been analyzed for viral load in the early (March 2020) and late (May 2020) phases of epidemic in Brescia, Italy. Isolation of SARS-CoV-2 from 2 high viral load specimens identified on March 9 (AP66) and on May 8 (GZ69) was performed on Vero E6 cells. Amount of virus released was assessed by quantitative PCR. Genotypic characterization of AP66 and GZ69 was performed by next generation sequencing followed by an in-depth in silico analysis of nucleotide mutations. RESULTS: The SARS-CoV-2 GZ69 strain, isolated in May from an asymptomatic healthcare worker, showed an unprecedented capability of replication in Vero E6 cells in the absence of any evident cytopathic effect. Vero E6 subculturing, up to passage 4, showed that SARS-CoV-2 GZ69 infection was as productive as the one sustained by the cytopathic strain AP66. Whole genome sequencing of the persistently replicating SARS-CoV-2 GZ69 has shown that this strain differs from the early AP66 variant in 9 nucleotide positions (C2939T; C3828T; G21784T; T21846C; T24631C; G28881A; G28882A; G28883C; G29810T) which lead to 6 non-synonymous substitutions spanning on ORF1ab (P892S; S1188L), S (K74N; I95T) and N (R203K, G204R) proteins. CONCLUSIONS: Identification of the peculiar SARS-CoV-2 GZ69 strain in the late Italian epidemic highlights the need to better characterize viral variants circulating among asymptomatic or paucisymptomatic individuals. The current approach could unravel the ways for future studies aimed at analyzing the selection process which favours viral mutations in the human host.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genetic Variation , Pneumonia, Viral/virology , Amino Acid Substitution , Animals , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/epidemiology , Cytopathogenic Effect, Viral/genetics , Cytopathogenic Effect, Viral/physiology , Genome, Viral , Humans , Italy/epidemiology , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Translational Research, Biomedical , Vero Cells , Viral Proteins/genetics , Viral Proteins/physiology , Virus Cultivation/methods , Virus Replication/genetics , Virus Replication/physiology , Whole Genome Sequencing
8.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31653015

ABSTRACT

In recent years immunomodulators have gained a strong interest and represent nowadays an active expanding area of research for the control of microbial diseases and for their therapeutic potential in preventing, treating and reducing the morbidity and mortality of different diseases. Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid, PDT) is a synthetic dipeptide, which possesses immunomodulatory properties and exerts a well-defined pharmacological activity against infections, but its real mechanism of action is still undefined. Here, we show that PDT is capable of activating tyrosine phosphorylation-based cell signaling in human primary monocytes and triggering rapid adhesion and chemotaxis. PDT-induced monocyte migration requires the activation of the PI3K/Akt signaling pathway and chemokine receptor CXCR3. Indeed, a mAb to CXCR3 and a specific receptor inhibitor suppressed significantly PDT-dependent chemotaxis, and CXCR3-silenced primary monocytes lost responsiveness to PDT chemoattraction. Moreover, our results highlighted that the PDT-induced migratory activity is sustained by the CXCR3A isoform, since CXCR3-transfected L1.2 cells acquired responsiveness to PDT stimulation. Finally, we show that PDT, as CXCR3 ligands, is also able to direct the migration of IL-2 activated T cells, which express the highest levels of CXCR3 among CXCR3-expressing cells. In conclusion, our study defines a chemokine-like activity for PDT through CXCR3A and points on the possible role that this synthetic dipeptide may play in leukocyte trafficking and function. Since recent studies have highlighted diverse therapeutic roles for molecules which activates CXCR3, our findings call for an exploration of using this dipeptide in different pathological processes.


Subject(s)
Monocytes/drug effects , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptors, CXCR3/metabolism , Thiazolidines/pharmacology , Antibodies, Monoclonal/immunology , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Chemotaxis/drug effects , Dipeptides/chemical synthesis , Dipeptides/pharmacology , Humans , Monocytes/cytology , Monocytes/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidonecarboxylic Acid/chemical synthesis , Pyrrolidonecarboxylic Acid/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Receptors, CXCR3/antagonists & inhibitors , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thiazolidines/chemical synthesis
9.
Hum Brain Mapp ; 39(3): 1412-1427, 2018 03.
Article in English | MEDLINE | ID: mdl-29265483

ABSTRACT

Decoding the meaning of others' actions, a crucial step for social cognition, involves different neural mechanisms. While the "mirror" and "mentalizing" systems have been associated with, respectively, the processing of biological actions versus more abstract information, their respective contribution to intention understanding is debated. Processing social interactions seems to recruit both neural systems, with a different weight depending on cues emphasizing either shared action goals or shared mental states. We have previously shown that observing cooperative and affective social interactions elicits stronger activity in key nodes of, respectively, the mirror (left posterior superior temporal sulcus (pSTS), superior parietal cortex (SPL), and ventral/dorsal premotor cortex (vPMC/dPMC)) and mentalizing (ventromedial prefrontal cortex (vmPFC)) systems. To unveil their causal organization, we investigated the effective connectivity underlying the observation of human social interactions expressing increasing cooperativity (involving left pSTS, SPL, and vPMC) versus affectivity (vmPFC) via dynamic causal modeling in 36 healthy human subjects. We found strong evidence for a model including the pSTS and vPMC as input nodes for the observed interactions. The extrinsic connectivity of this model undergoes oppositely valenced modulations, with cooperativity promoting positive modulations of connectivity between pSTS and both SPL (forward) and vPMC (mainly backward), and affectivity promoting reciprocal positive modulations of connectivity between pSTS and vmPFC (mainly backward). Alongside fMRI data, such divergent effective connectivity suggests that different dimensions underlying the processing of social interactions recruit distinct, although strongly interconnected, neural pathways associated with, respectively, the bottom-up visuomotor processing of motor intentions, and the top-down attribution of affective/mental states.


Subject(s)
Brain/physiology , Cooperative Behavior , Emotions/physiology , Social Perception , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Mirror Neurons/physiology , Models, Neurological , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Theory of Mind/physiology
10.
Med Mycol ; 56(8): 963-971, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29373716

ABSTRACT

In the present study clinical data and isolates from cases of cryptococcosis recorded during clinical surveys carried out in Italy from 1997 to 2016, were investigated. Molecular typing and antifungal susceptibility testing were performed in order to delineate the epidemiological trend of cryptococcosis in Italy and to define wild-type population for four different antifungal compounds. During the studied period, a total of 302 cases collected from 32 centers of 11 Italian regions were recorded. Analysis of clinical data showed a significant increase of frequency (from 7% to 38%) of cryptococcosis in human immunodeficiency virus (HIV)-negative patients primarily with hematologic malignancies and solid organ transplantations. The prevalence of the molecular types has significantly changed during the study period, showing an increase of VNIII isolates from 11% to 41% in HIV-negative patients, and a decrease of VNIV isolates from 36% to 16%. Antifungal susceptibility testing allowed us to calculate the epidemiological cut-off for flucytosine (1 mg/l), fluconazole (8 mg/l), itraconazole (0.5 mg/l), and voriconazole (0.25 mg/l). Most of the isolates were wild-type strains. Comparison of the MIC distributions according to molecular types showed that VNIV isolates had lower MICs for fluconazole and itraconazole than the VNI and VIII isolates. The current study emphasizes that the epidemiology of cryptococcosis in Italy has significantly changed over the last decades.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcosis/epidemiology , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/isolation & purification , Genetic Variation , Molecular Typing , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cryptococcus neoformans/classification , Cryptococcus neoformans/genetics , Female , Humans , Italy/epidemiology , Male , Microbial Sensitivity Tests , Middle Aged , Prevalence , Prospective Studies , Young Adult
11.
Fungal Genet Biol ; 87: 22-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26768709

ABSTRACT

Cryptococcus neoformans var. neoformans (serotype D) represents about 30% of the clinical isolates in Europe and is present less frequently in the other continents. It is the prevalent etiological agent in primary cutaneous cryptococcosis as well as in cryptococcal skin lesions of disseminated cryptococcosis. Very little is known about the genotypic diversity of this Cryptococcus subtype. The aim of this study was to investigate the genotypic diversity among a set of clinical and environmental C. neoformans var. neoformans isolates and to evaluate the relationship between genotypes, geographical origin and clinical manifestations. A total of 83 globally collected C. neoformans var. neoformans isolates from Italy, Germany, France, Belgium, Denmark, Greece, Turkey, Thailand, Japan, Colombia, and the USA, recovered from different sources (primary and secondary cutaneous cryptococcosis, disseminated cryptococcosis, the environment, and animals), were included in the study. All isolates were confirmed to belong to genotype VNIV by molecular typing and they were further investigated by MLST analysis. Maximum likelihood phylogenetic as well as network analysis strongly suggested the existence of a recombinant rather than a clonal population structure. Geographical origin and source of isolation were not correlated with a specific MLST genotype. The comparison with a set of outgroup C. neoformans var. grubii isolates provided clear evidence that the two varieties have different population structures.


Subject(s)
Cryptococcosis/microbiology , Cryptococcus neoformans/classification , Genetic Variation , Genotype , Multilocus Sequence Typing , Mycological Typing Techniques , Recombination, Genetic , Americas , Asia , Cryptococcus neoformans/genetics , Cryptococcus neoformans/isolation & purification , Europe , Phylogeography
13.
FEMS Yeast Res ; 16(4)2016 06.
Article in English | MEDLINE | ID: mdl-27188887

ABSTRACT

In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts.


Subject(s)
Cryptococcus gattii/isolation & purification , Cryptococcus neoformans/isolation & purification , Environmental Microbiology , Trees/microbiology , Cryptococcus gattii/classification , Cryptococcus gattii/genetics , Cryptococcus neoformans/classification , Cryptococcus neoformans/genetics , Genotype , Mediterranean Region , Molecular Typing , Mycological Typing Techniques
14.
J Virol Methods ; 324: 114858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029970

ABSTRACT

People living with human immunodeficiency virus type 1 (HIV-1), even if successfully treated with a combined antiretroviral therapy, display a persistent inflammation and chronic immune activation, and an increasing risk of developing cardiovascular and thrombotic events, cancers, and neurologic disorders. Accumulating evidence reveals that biologically active HIV-1 proteins may play a role in the development of these HIV-1-associated conditions. The HIV-1 matrix protein p17 (p17) is released and accumulates in different organs and tissue where it may exert multiple biological activities on different target cells. To assess a role of p17 in different HIV-1-related pathological processes, it is central to definitively ascertain and quantitate its expression in a large number of sera obtained from HIV-1-infected (HIV-1+) patients. To this aim, we developed a specific and highly sensitive p17 capture immunoenzymatic assay. Data obtained highlight a heterogeneous expression of p17 in blood of tested patients, with patients who were negative or displayed from low to relatively high p17 blood concentrations (range from 0.05 to 7.29 nM). Moreover, we found that blood p17 concentration was totally independent from the viremic status of the patient. This finding calls for monitoring HIV-1+ patients in order to evaluate a possible correlation between p17 amount in blood and the likelihood of developing HIV-1-related pathological conditions.


Subject(s)
HIV Infections , HIV-1 , Humans , gag Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antigens/metabolism , Viremia
15.
Viruses ; 16(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39066211

ABSTRACT

The human immunodeficiency virus (HIV-1) matrix protein p17 (p17) is released from infected cells as a protein capable of deregulating the biological activity of different cells. P17 variants (vp17s), more frequently detected in the plasma of HIV-1+ patients with rather than without lymphoma and characterized by amino acids insertions in their C-terminal region, were found to trigger B cell growth and clonogenicity. Vp17s endowed with B-cell-growth-promoting activity are drastically destabilized, whereas, in a properly folded state, reference p17 (refp17) does not exert any biological activity on B cell growth and clonogenicity. However, misfolding of refp17 is necessary to expose a masked functional epitope, interacting with the protease-activated receptor 1 (PAR-1), endowed with B cell clonogenicity. Indeed, it is worth noting that changes in the secondary structure can strongly impact the function of a protein. Here, we performed computational studies to show that the gain of function of vp17s is linked to dramatic conformational changes due to structural modification in the secondary-structure elements and in the rearrangement of the hydrogen bond (H-bond) network. In particular, all clonogenic vp17s showed the disengagement of two critical residues, namely Trp16 and Tyr29, from their hydrophobic core. Biological data showed that the mutation of Trp16 and Tyr29 to Ala in the refp17 backbone, alone or in combination, resulted in a protein endowed with B cell clonogenic activity. These data show the pivotal role of the hydrophobic component in maintaining refp17 stability and identify a novel potential therapeutic target to counteract vp17-driven lymphomagenesis in HIV-1+ patients.


Subject(s)
B-Lymphocytes , HIV Antigens , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , Humans , HIV Antigens/genetics , HIV Antigens/metabolism , HIV Antigens/chemistry , HIV-1/genetics , HIV-1/physiology , B-Lymphocytes/virology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , gag Gene Products, Human Immunodeficiency Virus/chemistry , HIV Infections/virology , Cell Proliferation , Protein Folding
16.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36851546

ABSTRACT

Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvß3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.


Subject(s)
COVID-19 , Virus Diseases , Humans , Endothelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Integrins , Mutation
17.
Viruses ; 15(5)2023 05 09.
Article in English | MEDLINE | ID: mdl-37243214

ABSTRACT

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Drug Repositioning/methods
18.
Behav Brain Funct ; 8: 6, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22300540

ABSTRACT

BACKGROUND: There is at present crescent empirical evidence deriving from different lines of ERPs research that, unlike previously observed, the earliest sensory visual response, known as C1 component or P/N80, generated within the striate cortex, might be modulated by selective attention to visual stimulus features. Up to now, evidence of this modulation has been related to space location, and simple features such as spatial frequency, luminance, and texture. Additionally, neurophysiological conditions, such as emotion, vigilance, the reflexive or voluntary nature of input attentional selection, and workload have also been related to C1 modulations, although at least the workload status has received controversial indications. No information is instead available, at present, for objects attentional selection. METHODS: In this study object- and space-based attention mechanisms were conjointly investigated by presenting complex, familiar shapes of artefacts and animals, intermixed with distracters, in different tasks requiring the selection of a relevant target-category within a relevant spatial location, while ignoring the other shape categories within this location, and, overall, all the categories at an irrelevant location. EEG was recorded from 30 scalp electrode sites in 21 right-handed participants. RESULTS AND CONCLUSIONS: ERP findings showed that visual processing was modulated by both shape- and location-relevance per se, beginning separately at the latency of the early phase of a precocious negativity (60-80 ms) at mesial scalp sites consistent with the C1 component, and a positivity at more lateral sites. The data also showed that the attentional modulation progressed conjointly at the latency of the subsequent P1 (100-120 ms) and N1 (120-180 ms), as well as later-latency components. These findings support the views that (1) V1 may be precociously modulated by direct top-down influences, and participates to object, besides simple features, attentional selection; (2) object spatial and non-spatial features selection might begin with an early, parallel detection of a target object in the visual field, followed by the progressive focusing of spatial attention onto the location of an actual target for its identification, somehow in line with neural mechanisms reported in the literature as "object-based space selection", or with those proposed for visual search.


Subject(s)
Attention/physiology , Visual Perception/physiology , Analysis of Variance , Data Interpretation, Statistical , Electroencephalography , Evoked Potentials/physiology , Female , Form Perception/physiology , Functional Laterality/physiology , Humans , Male , Photic Stimulation , Psychomotor Performance/physiology , Signal-To-Noise Ratio , Visual Cortex/physiology , Visual Fields , Young Adult
19.
Viruses ; 14(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35458435

ABSTRACT

Integrins represent a gateway of entry for many viruses and the Arg-Gly-Asp (RGD) motif is the smallest sequence necessary for proteins to bind integrins. All Severe Acute Respiratory Syndrome Virus type 2 (SARS-CoV-2) lineages own an RGD motif (aa 403-405) in their receptor binding domain (RBD). We recently showed that SARS-CoV-2 gains access into primary human lung microvascular endothelial cells (HL-mECs) lacking Angiotensin-converting enzyme 2 (ACE2) expression through this conserved RGD motif. Following its entry, SARS-CoV-2 remodels cell phenotype and promotes angiogenesis in the absence of productive viral replication. Here, we highlight the αvß3 integrin as the main molecule responsible for SARS-CoV-2 infection of HL-mECs via a clathrin-dependent endocytosis. Indeed, pretreatment of virus with αvß3 integrin or pretreatment of cells with a monoclonal antibody against αvß3 integrin was found to inhibit SARS-CoV-2 entry into HL-mECs. Surprisingly, the anti-Spike antibodies evoked by vaccination were neither able to impair Spike/integrin interaction nor to prevent SARS-CoV-2 entry into HL-mECs. Our data highlight the RGD motif in the Spike protein as a functional constraint aimed to maintain the interaction of the viral envelope with integrins. At the same time, our evidences call for the need of intervention strategies aimed to neutralize the SARS-CoV-2 integrin-mediated infection of ACE2-negative cells in the vaccine era.


Subject(s)
COVID-19 , Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19/prevention & control , Endocytosis , Endothelial Cells/metabolism , Humans , Integrin alphaV/metabolism , Integrin beta3/metabolism , Oligopeptides , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
20.
Cell Rep ; 39(9): 110905, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35617963

ABSTRACT

Neutralizing antibodies (nAbs) that target the SARS-CoV-2 spike protein have received emergency use approval for treatment of COVID-19. However, with the emergence of variants of concern, there is a need for new treatment options. We report a format that enables modular assembly of bi-paratopic tetravalent nAbs with antigen-binding sites from two distinct nAbs. The tetravalent nAb purifies in high yield and exhibits biophysical characteristics that are comparable to those of clinically used therapeutic antibodies. The tetravalent nAb binds to the spike protein trimer at least 100-fold more tightly than bivalent IgGs (apparent KD < 1 pM) and neutralizes a broad array of SARS-CoV-2 pseudoviruses, chimeric viruses, and authentic viral variants with high potency. Together, these results establish the tetravalent diabody-Fc-Fab as a robust, modular platform for rapid production of drug-grade nAbs with potencies and breadth of coverage that greatly exceed those of conventional bivalent IgGs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL