Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
BMC Pulm Med ; 18(1): 189, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30522479

ABSTRACT

BACKGROUND: Hepatic ischemia-reperfusion injury (IRI) is a common pathological phenomenon, which causes hepatic injury as well as remote organ injuries such as the lung. Several mediators, such as oxidative stress, Ca2+ overload and neutrophil infiltration, have been implied in the pathogenesis of liver and remote organ injuries following reperfusion. WNT1 inducible signaling pathway protein 1 (WISP1) is an extracellular matrix protein that has been associated with the onset of several malignant diseases. Previous work in our group has demonstrated WISP1 is upregulated and contributes to proinflammatory cascades in hepatic IRI. However, the role of WISP1 in the pathogenesis of lung injury after hepatic IRI still remains unknown. METHODS: Male C57BL/6 mice were used to examine the expression and role of WISP1 in the pathogenesis of lung injuries after hepatic IRI and explore its potential mechanisms in mediating lung injuries. RESULTS: We found WISP1 was upregulated in lung tissues following hepatic IRI. Treatment with anti-WISP1 antibody ameliorated lung injuries with alteration of cytokine profiles. Administration with rWISP1 aggravated lung injuries following hepatic IRI through excessive production of proinflammatory cytokines and inhibition of anti-inflammatory cytokines. CONCLUSIONS: In this study, we concluded that WISP1 contributed to lung injuries following hepatic IRI through TLR4 pathway.


Subject(s)
CCN Intercellular Signaling Proteins/metabolism , Liver , Lung Injury , Proto-Oncogene Proteins/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cytokines/metabolism , Liver/metabolism , Liver/pathology , Lung Injury/etiology , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Oxidative Stress/physiology , Reperfusion Injury/complications , Signal Transduction , Up-Regulation
2.
Mediators Inflamm ; 2017: 7083528, 2017.
Article in English | MEDLINE | ID: mdl-29440779

ABSTRACT

Liver ischemia and reperfusion (I/R) induce local and distant tissue injuries, contributing to morbidity and mortality in a wider range of pathologies. This is especially seen under uncontrolled aseptic inflammatory conditions, leading to injury of remote organs, such as lung injury, and even failure. Saquinavir (SQV) is a kind of HIV protease inhibitor that possesses an anti-inflammatory property. In this study, we investigated whether SQV suppresses Toll-like receptor 4- (TLR4-) dependent signaling pathways of high-mobility group box 1 (HMGB1) and P38/JNK, conferring protection against murine liver I/R-induced lung injury. To investigate our hypothesis, C57BL/6 mice and TLR4 knockout mice (TLR4-/-) were used to perform the study. SQV administration markedly attenuated remote lung tissue injury after 1-hour ischemia and 6-hour reperfusion of the liver. To our expectation, SQV attenuated I/R-induced lung edema, hyperpermeability, and pathological injury. The beneficial effects of SQV were associated with decreased levels of circulating and lung tissue inflammatory cytokines, such as IL-6, IL-1ß, TNF-α, and iNOS. The protective effect of SQV was also associated with decreased lung tissue expression of HMGB1, TLR-4, and p-P38/JNK, but not p-ERK in wild-type liver I/R mice. Overall, this study demonstrated a new role of SQV, facilitating negative regulation of HMGB1- and P38/JNK-mediated TLR-4-dependent signaling pathways, conferring protection against liver I/R-induced lung injury.


Subject(s)
HMGB1 Protein/physiology , JNK Mitogen-Activated Protein Kinases/physiology , Liver/blood supply , Lung Injury/drug therapy , Reperfusion Injury/drug therapy , Saquinavir/therapeutic use , Signal Transduction/physiology , Toll-Like Receptor 4/physiology , p38 Mitogen-Activated Protein Kinases/physiology , Animals , Cytokines/physiology , Lung Injury/immunology , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/immunology , Warm Ischemia
3.
Acta Biochim Biophys Sin (Shanghai) ; 49(10): 907-915, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28981603

ABSTRACT

Saquinavir (SQV) is the first FDA approved HIV protease inhibitor. Previous studies showed that SQV can limit Toll-like receptor-4 (TLR4)-mediated inflammatory pathway and nuclear factor-κB (NF-κB) activation, thereby playing a protective role in many kinds of diseases. High-mobility group box 1 (HMGB1) has been identified as an inflammatory mediator and it might express its toxicity in a short period of time in ventilator-induced lung injury (VILI). In this study, C57BL/6 mice were randomly divided into four groups (n = 10): control group and control with SQV group (Con + SQV) were spontaneous breath. HTV group (HTV) received high tidal volume ventilation (HTV) for 4 h. HTV with SQV group (HTV + SQV) were pretreated with 5 mg/kg of SQV for 7 days before HTV. Mice were sacrificed after 4 h of HTV. Lung wet/dry weight (W/D) ratio, alveolar-capillary permeability to Evans blue albumin (EBA), cell counts, total proteins in bronchoalveolar lavage fluid (BALF), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) level in BALF and lung tissue, and lung histopathology were examined. Our results showed that HTV caused significant lung injury and NF-κB activation, which was correlated with the increase of TNF-α and IL-6 levels in BALF and plasma. SQV pretreatment significantly attenuated pulmonary inflammatory injury, as well as NF-κB activation. These findings indicate that the protective effect of SQV may be associated with the inhibition of NF-κB activation and HMGB1 expression in mice.


Subject(s)
HMGB1 Protein/metabolism , Protective Agents/pharmacology , Saquinavir/pharmacology , Ventilator-Induced Lung Injury/prevention & control , Animals , Bronchoalveolar Lavage Fluid/chemistry , HIV Protease Inhibitors/pharmacology , HMGB1 Protein/genetics , Interleukin-6/blood , Interleukin-6/metabolism , Lung/metabolism , Lung/pathology , Lung/physiopathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Random Allocation , Tidal Volume , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/physiopathology
4.
J Thorac Dis ; 15(4): 1770-1784, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37197531

ABSTRACT

Background: Sepsis is a life-threatening disease with a high mortality in the intensive care unit (ICU), and autophagy plays an essential role in the development of sepsis. The purpose of this study was to identify potential autophagy-related genes in sepsis and their relationship with immune cell infiltration by bioinformatics analysis. Methods: The messenger RNA (mRNA) expression profile of the GSE28750 data set was collected from the Gene Expression Omnibus (GEO) database. The potential differentially expressed autophagy-related genes of sepsis were screened with the "limma" package in R (The Foundation for Statistical Computing). The hub genes were selected by weighted gene coexpression network analysis (WGCNA) networks with Cytoscape, and functional enrichment analysis was performed. The expression level and diagnostic value of the hub genes were validated by Wilcoxon test and receiver operating characteristic (ROC) curve analysis of the GSE95233 data set. The compositional patterns of immune cell infiltration in sepsis were estimated using the CIBERSORT algorithm. Spearman rank correlation analysis was used to associate the identified biomarkers with infiltrating immune cells. A competing endogenous (ceRNA) network was constructed to predict related noncoding RNAs of identified biomarkers with the miRWalk platform. Results: In all, 80 differential autophagy-related genes were obtained. GABARAPL2, GAPDH, WDFY3, MAP1LC3B, DRAM1, WIPI1, and ULK3 were identified as hub genes and diagnostic biomarker groups for sepsis. In addition, 7 differentially infiltrated immune cells correlated with the hub autophagy-related genes were identified. The ceRNA network predicted 23 microRNAs and 122 long noncoding RNAs related to 5 hub autophagy-related genes. Conclusions: GABARAPL2, GAPDH, WDFY3, MAP1LC3B, DRAM1, WIPI1, and ULK3 may influence the development of sepsis and have a vital impact on sepsis immune regulation as autophagy-related genes.

5.
Front Cardiovasc Med ; 10: 1018422, 2023.
Article in English | MEDLINE | ID: mdl-36937929

ABSTRACT

Background: Early diagnosis of septic cardiomyopathy is essential to reduce the mortality rate of sepsis. Previous studies indicated that iron metabolism plays a vital role in sepsis-induced cardiomyopathy. Here, we aimed to identify shared iron metabolism-related genes (IMRGs) in the myocardium and blood monocytes of patients with sepsis and to determine their prognostic signature. Methods: First, an applied bioinformatics-based analysis was conducted to identify shared IMRGs differentially expressed in the myocardium and peripheral blood monocytes of patients with sepsis. Second, Cytoscape was used to construct a protein-protein interaction network, and immune infiltration of the septic myocardium was assessed using single-sample gene set enrichment analysis. In addition, a prognostic prediction model for IMRGs was established by Cox regression analysis. Finally, the expression of key mRNAs in the myocardium of mice with sepsis was verified using quantitative polymerase chain reaction analysis. Results: We screened common differentially expressed genes in septic myocardium and blood monocytes and identified 14 that were related to iron metabolism. We found that HBB, SLC25A37, SLC11A1, and HMOX1 strongly correlated with monocytes and neutrophils, whereas HMOX1 and SLC11A1 strongly correlated with macrophages. We then established a prognostic model (HIF1A and SLC25A37) using the common differentially expressed IMRGs. The prognostic model we established was expected to better aid in diagnosing septic cardiomyopathy. Moreover, we verified these genes using datasets and experiments and found a significant difference between the sepsis and control groups. Conclusion: Common differential expression of IMRGs was identified in blood monocytes and myocardium between sepsis and control groups, among which HIF1A and SLC25A37 might predict prognosis in septic cardiomyopathy. The study may help us deeply understand the molecular mechanisms of iron metabolism and aid in the diagnosis and treatment of septic cardiomyopathy.

6.
J Food Biochem ; 46(12): e14508, 2022 12.
Article in English | MEDLINE | ID: mdl-36332190

ABSTRACT

Partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, has shown beneficial physiological effects in various disease models and is used as a prebiotic to regulate intestinal function. However, its role in healthy states remains unclear. The purpose of this study was to investigate the effects of PHGG on gut flora composition and predict metabolic function in healthy mice. Our study showed that PHGG supplementation had significant duration-dependent effects on the composition and function of the intestinal flora of healthy mice. In specific, although the long-term supplementation of PHGG may increase the abundance of some beneficial bacterial species and promote beneficial phenotypes, it may also cause increased body weight and decreased abundance and diversity of gut microorganisms. Therefore, the long-term use of PHGG as a nutritional product still requires further investigation. PRACTICAL APPLICATIONS: As the importance of the gut microbiota has become more widely recognized, interventions that modulate the microbiome and its interaction with the host have gained much attention. While the capability of some prebiotics has largely been shown to have many beneficial effects, the evidence leaves much desirable, and microbiota regulation is explored differently in healthy or diseased states. Currently, the scientific community and regulatory authorities are beginning to pay attention to these unregulated and over-the-counter products claiming to possess probiotic and prebiotic properties. Studies exploring the rationality of these prebiotics as nutraceuticals for use in health states are essential. This study focuses on the effects of PHGG, a prebiotic, on intestinal flora, metabolism, and function when used in a healthy state over a long period. It is helpful to have a clearer understanding of the effect of PHGG on intestinal flora and the possible mechanisms of action to exert effects, which are indicative for the future application of PHGG as a nutraceutical or therapeutic agent..


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Prebiotics , Galactans , Defecation
7.
Cell Death Dis ; 12(1): 67, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431821

ABSTRACT

Imbalance of macrophage polarization plays an indispensable role in acute lung injury (ALI), which is considered as a promising target. Matrix metalloproteinase-9 (MMP-9) is expressed in the macrophage, and has a pivotal role in secreting inflammatory cytokines. We reported that saquinavir (SQV), a first-generation human immunodeficiency virus-protease inhibitor, restricted exaggerated inflammatory response. However, whether MMP-9 could regulate macrophage polarization and inhibit by SQV is still unknown. We focused on the important role of macrophage polarization in CLP (cecal ligation puncture)-mediated ALI and determined the ability of SQV to maintain M2 over M1 phenotype partially through the inhibition of MMP-9. We also performed a limited clinical study to determine if MMP-9 is a biomarker of sepsis. Lipopolysaccharide (LPS) increased MMP-9 expression and recombinant MMP-9 (rMMP-9) exacerbated LPS-mediated M1 switching. Small interfering RNA to MMP-9 inhibited LPS-mediated M1 phenotype and SQV inhibition of this switching was reversed with rMMP-9, suggesting an important role for MMP-9 in mediating LPS-induced M1 phenotype. MMP-9 messenger RNA levels in peripheral blood mononuclear cells of these 14 patients correlated with their clinical assessment. There was a significant dose-dependent decrease in mortality and ALI after CLP with SQV. SQV significantly inhibited LPS-mediated M1 phenotype and increased M2 phenotype in cultured RAW 264.7 and primary murine bone marrow-derived macrophages as well as lung macrophages from CLP-treated mice. This study supports an important role for MMP-9 in macrophage phenotypic switching and suggests that SQV-mediated inhibition of MMP-9 may be involved in suppressing ALI during systemic sepsis.


Subject(s)
Acute Lung Injury/therapy , Macrophage Activation/physiology , Matrix Metalloproteinase 9/metabolism , Saquinavir/therapeutic use , Animals , Disease Models, Animal , HIV Protease Inhibitors/therapeutic use , Humans , Male , Mice , Middle Aged
8.
Inflammation ; 42(2): 485-495, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30317531

ABSTRACT

Mechanical ventilation (MV) can augment sepsis-induced organ injury. Previous studies indicate that human mesenchymal stem cells (hMSCs) have immune-modulatory effect. We hypothesize that human adipose tissue-derived stromal cells (hADSCs) could attenuate MV and sepsis-induced organ injury. Male C57BL/6 mice were randomized to five groups: Sham group; MV group; cecal ligation and puncture (CLP) group; CLP + MV group; and CLP + MV + hADSC group. Anesthetized mice were subjected to cecal ligation and puncture surgery. The mice then received mechanical ventilation (12 ml/kg), with or without the intervention of hADSCs. The survival rate, organ injury of the liver and kidney, total protein and cells in bronchoalveolar lavage fluid (BALF), and histological changes of the lung and liver were examined. The level of IL-6 in BALF was measured by ELISA. Real-time quantitative PCR was used to analyze mRNA of IL-6 and tumor necrosis factor-α (TNF-α). hADSC treatment increased survival rate of septic mice with MV. hADSCs attenuated dysfunction of the liver and kidney and decreased lung inflammation and tissue injury of the liver and lung. IL-6 level in BALF and TNF-α and IL-6 mRNA expression in the tissue of the lung, liver, and kidney were significantly reduced by hADSC treatment. MV with conventional tidal volume aggravates CLP-induced multiple organ injuries. hADSCs inhibited the compound injuries possibly through modulation of immune responses.


Subject(s)
Multiple Organ Failure/therapy , Respiration, Artificial/adverse effects , Sepsis/complications , Stromal Cells/transplantation , Adipose Tissue/cytology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cytokines/analysis , Humans , Kidney/injuries , Liver/injuries , Liver/pathology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Multiple Organ Failure/etiology , Multiple Organ Failure/mortality , Respiration, Artificial/mortality , Sepsis/mortality , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL