Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 117(52): 33263-33271, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318201

ABSTRACT

Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.


Subject(s)
Actins/metabolism , Wound Healing , Animals , Biomechanical Phenomena , Cell Adhesion , Cell Proliferation , Cell Shape , Dogs , Imaging, Three-Dimensional , Kinetics , Madin Darby Canine Kidney Cells , Microscopy, Atomic Force , Models, Biological , Time Factors
2.
Soft Matter ; 15(36): 7203-7210, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31475279

ABSTRACT

Cancer metastasis has been believed as a genetically programmed process that is commonly marked by biochemical signals. Here using extracellular matrix control of cellular mechanics, we establish that cellular force threshold can also mark in vitro metastatic phenotypic change and malignant transformation in HCT-8 cell colonies. We observe that for prolonged culture time the HCT-8 cell colonies disperse into individual malignant cells, and the metastatic-like dispersion depends on both cell-seeding gel stiffness and colony size. Cellular force microscopies show that gel stiffness and colony size are also two key parameters that modulate cellular forces, suggesting the correlations between the cellular forces and the metastatic phenotypic change. Using our recently developed biophysical model, we construct an extracellular traction phase diagram in the stiffness-size space, filled with experimental data on the colony behavior. From the phase diagram we identify a phase boundary as a traction force threshold above which the metastatic phenotypic transition occurs and below which the cell colonies remain cohesive. Our finding suggests that the traction threshold can be regarded as an effective mechano-marker for the onset of the metastatic-like dispersion and malignant transformation.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Cell Adhesion , Cell Line, Tumor , Colon/cytology , Extracellular Matrix/metabolism , Humans , Mechanotransduction, Cellular , Models, Biological , Phenotype , Stress, Mechanical
3.
Biomech Model Mechanobiol ; 22(4): 1349-1363, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37149822

ABSTRACT

The coordinated behaviors of epithelial cells are widely observed in tissue development, such as re-epithelialization, tumor growth, and morphogenesis. In these processes, cells either migrate collectively or organize themselves into specific structures to serve certain purposes. In this work, we study a spreading epithelial monolayer whose migrating front encloses a circular gap in the monolayer center. Such tissue is usually used to mimic the wound healing process in vitro. We model the epithelial sheet as a layer of active viscous polar fluid. With an axisymmetric assumption, the model can be analytically solved under two special conditions, suggesting two possible spreading modes for the epithelial monolayer. Based on these two sets of analytical solutions, we assess the velocity of the spreading front affected by the gap size, the active intercellular contractility, and the purse-string contraction acting on the spreading edge. Several critical values exist in the model parameters for the initiation of the gap closure process, and the purse-string contraction plays a vital role in governing the gap closure kinetics. Finally, the instability of the morphology of the spreading front was studied. Numerical calculations show how the perturbated velocities and the growth rates vary with respect to different model parameters.


Subject(s)
Epithelial Cells , Cell Movement
4.
PNAS Nexus ; 2(8): pgad237, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37680491

ABSTRACT

The ability of cells to sense and adapt to curvy topographical features has been implicated in organ morphogenesis, tissue repair, and tumor metastasis. However, how individual cells or multicellular assemblies sense and differentiate curvatures remains elusive. Here, we reveal a curvature sensing mechanism in which surface tension can selectively activate either actin or integrin flows, leading to bifurcating cell migration modes: focal adhesion formation that enables cell crawling at convex front edges and actin cable assembly that pulls cells forward at concave front edges. The molecular flows and curved front morphogenesis are sustained by coordinated cellular tension generation and transmission. We track the molecular flows and mechanical force transduction pathways by a phase-field model, which predicts that multicellular curvature sensing is more efficient than individual cells, suggesting collective intelligence of cells. The unique ability of cells in curvature sensing and migration mode bifurcating may offer insights into emergent collective patterns and functions of living active systems at different length scales.

5.
ACS Nano ; 15(4): 7618-7627, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33844497

ABSTRACT

Fluid-to-solid phase transition in multicellular assembly is crucial in many developmental biological processes, such as embryogenesis and morphogenesis. However, biomechanical studies in this area are limited, and little is known about factors governing the transition and how cell behaviors are regulated. Due to different stresses present, cells could behave distinctively depending on the nature of tissue. Here we report a fluid-to-solid transition in geometrically confined multicellular assemblies. Under circular confinement, Madin-Darby canine kidney (MDCK) monolayers undergo spatiotemporally oscillatory motions that are strongly dependent on the confinement size and distance from the periphery of the monolayers. Nanomechanical mapping reveals that epithelial tensional stress and traction forces on the substrate are both dependent on confinement size. The oscillation pattern and cellular nanomechanics profile appear well correlated with stress fiber assembly and cell polarization. These experimental observations imply that the confinement size-dependent surface tension regulates actin fiber assembly, cellular force generation, and cell polarization. Our analyses further suggest a characteristic confinement size (approximates to MDCK's natural correlation length) below which surface tension is sufficiently high and triggers a fluid-to-solid transition of the monolayers. Our findings may shed light on the geometrical and nanomechanical control of tissue morphogenesis and growth.


Subject(s)
Epithelial Cells , Animals , Cell Movement , Dogs , Madin Darby Canine Kidney Cells , Morphogenesis , Motion
6.
Adv Mater ; 30(27): e1707464, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29797358

ABSTRACT

Targeted delivery of nanoparticle (NP)-based diagnostic and therapeutic agents to malignant cells and tissues has exclusively relied on chemotargeting, wherein NPs are surface-coated with ligands that specifically bind to overexpressed receptors on malignant cells. Here, it is demonstrated that cellular uptake of NPs can also be biased to malignant cells based on the differential mechanical states of cells, enabling mechanotargeting. Owing to mechanotransduction, cell lines (HeLa and HCT-8) cultured on hydrogels of various stiffness are directed into different stress states, measured by cellular force microscopies. In vitro NP delivery reveals that increases in cell stress suppress cellular uptake, counteracting the enhanced uptake that occurs with increases in exposed surface area of spread cells. Upon prolonged culture on stiff hydrogels, cohesive HCT-8 cell colonies undergo metastatic phenotypic change and disperse into individual malignant cells. The metastatic cells are of extremely low stress state and adopt an unspread, 3D morphology, resulting in several-fold higher uptake than the nonmetastatic counterparts. This study opens a new paradigm of harnessing mechanics for the design of future strategies in nanomedicine.


Subject(s)
Nanoparticles , Biological Transport , Humans , Mechanotransduction, Cellular , Microscopy, Atomic Force , Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL