Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Magn Reson Med ; 92(2): 676-687, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38523575

ABSTRACT

PURPOSE: Abnormal adherence at functional myofascial interfaces is hypothesized as an important phenomenon in myofascial pain syndrome. This study aimed to investigate the feasibility of MR elastography (MRE)-based slip interface imaging (SII) to visualize and assess myofascial mobility in healthy volunteers. METHODS: SII was used to assess local shear strain at functional myofascial interfaces in the flexor digitorum profundus (FDP) and thighs. In the FDP, MRE was performed at 90 Hz vibration to each index, middle, ring, and little finger. Two thigh MRE scans were performed at 40 Hz with knees flexed and extended. The normalized octahedral shear strain (NOSS) maps were calculated to visualize myofascial slip interfaces. The entropy of the probability distribution of the gradient NOSS was computed for the two knee positions at the intermuscular interface between vastus lateralis and vastus intermedius, around rectus femoris, and between vastus intermedius and vastus medialis. RESULTS: NOSS map depicted distinct functional slip interfaces in the FDP for each finger. Compared to knee flexion, clearer slip interfaces and larger gradient NOSS entropy at the vastus lateralis-vastus intermedius interface were observed during knee extension, where the quadriceps are not passively stretched. This suggests the optimal position for using SII to visualize myofascial slip interface in skeletal muscles is when muscles are not subjected to any additional force. CONCLUSION: The study demonstrated that MRE-based SII can visualize and assess myofascial interface mobility in extremities. The results provide a foundation for investigating the hypothesis that myofascial pain syndrome is characterized by changes in the mobility of myofascial interfaces.


Subject(s)
Elasticity Imaging Techniques , Feasibility Studies , Humans , Elasticity Imaging Techniques/methods , Male , Adult , Female , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Myofascial Pain Syndromes/diagnostic imaging , Myofascial Pain Syndromes/physiopathology , Thigh/diagnostic imaging , Young Adult , Healthy Volunteers
2.
PLoS One ; 19(6): e0305247, 2024.
Article in English | MEDLINE | ID: mdl-38917107

ABSTRACT

Meningiomas, the most prevalent primary benign intracranial tumors, often exhibit complicated levels of adhesion to adjacent normal tissues, significantly influencing resection and causing postoperative complications. Surgery remains the primary therapeutic approach, and when combined with adjuvant radiotherapy, it effectively controls residual tumors and reduces tumor recurrence when complete removal may cause a neurologic deficit. Previous studies have indicated that slip interface imaging (SII) techniques based on MR elastography (MRE) have promise as a method for sensitively determining the presence of tumor-brain adhesion. In this study, we developed and tested an improved algorithm for assessing tumor-brain adhesion, based on recognition of patterns in MRE-derived normalized octahedral shear strain (NOSS) images. The primary goal was to quantify the tumor interfaces at higher risk for adhesion, offering a precise and objective method to assess meningioma adhesions in 52 meningioma patients. We also investigated the predictive value of MRE-assessed tumor adhesion in meningioma recurrence. Our findings highlight the effectiveness of the improved SII technique in distinguishing the adhesion degrees, particularly complete adhesion. Statistical analysis revealed significant differences in adhesion percentages between complete and partial adherent tumors (p = 0.005), and complete and non-adherent tumors (p<0.001). The improved technique demonstrated superior discriminatory ability in identifying tumor adhesion patterns compared to the previously described algorithm, with an AUC of 0.86 vs. 0.72 for distinguishing complete adhesion from others (p = 0.037), and an AUC of 0.72 vs. 0.67 for non-adherent and others. Aggressive tumors exhibiting atypical features showed significantly higher adhesion percentages in recurrence group compared to non-recurrence group (p = 0.042). This study validates the efficacy of the improved SII technique in quantifying meningioma adhesions and demonstrates its potential to affect clinical decision-making. The reliability of the technique, coupled with potential to help predict meningioma recurrence, particularly in aggressive tumor subsets, highlights its promise in guiding treatment strategies.


Subject(s)
Elasticity Imaging Techniques , Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Humans , Meningioma/diagnostic imaging , Meningioma/pathology , Meningioma/surgery , Elasticity Imaging Techniques/methods , Female , Middle Aged , Male , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Aged , Adult , Magnetic Resonance Imaging/methods , Neoplasm Recurrence, Local/diagnostic imaging , Tissue Adhesions/diagnostic imaging , Algorithms
3.
J Neurotrauma ; 40(19-20): 2193-2204, 2023 10.
Article in English | MEDLINE | ID: mdl-37233723

ABSTRACT

Increasing concerns have been raised about the long-term negative effects of subconcussive repeated head impact (RHI). To elucidate RHI injury mechanisms, many efforts have studied how head impacts affect the skull-brain biomechanics and have found that mechanical interactions at the skull-brain interface dampen and isolate brain motions by decoupling the brain from the skull. Despite intense interest, in vivo quantification of the functional state of the skull-brain interface remains difficult. This study developed a magnetic resonance elastography (MRE) based technique to non-invasively assess skull-brain mechanical interactions (i.e., motion transmission and isolation function) under dynamic loading. The full MRE displacement data were separated into rigid body motion and wave motion. The rigid body motion was used to calculate the brain-to-skull rotational motion transmission ratio (Rtr) to quantify skull-brain motion transmissibility, and the wave motion was used to calculate the cortical normalized octahedral shear strain (NOSS) (calculated based on a partial derivative computing neural network) to evaluate the isolation capability of the skull-brain interface. Forty-seven healthy volunteers were recruited to investigate the effects of age/sex on Rtr and cortical NOSS, and 17 of 47 volunteers received multiple scans to test the repeatability of the proposed techniques under different strain conditions. The results showed that both Rtr and NOSS were robust to MRE driver variations and had good repeatability, with intraclass correlation coefficient (ICC) values between 0.68 and 0.97 (fair to excellent). No age or sex dependence were observed with Rtr, whereas a significant positive correlation between age and NOSS was found in the cerebrum, frontal, temporal, and parietal lobes (all p < 0.05), but not in the occipital lobe (p = 0.99). The greatest change in NOSS with age was found in the frontal lobe, one of the most frequent locations of traumatic brain injury (TBI). Except for the temporal lobe (p = 0.0087), there was no significant difference in NOSS between men and women. This work provides motivation for utilizing MRE as a non-invasive tool for quantifying the biomechanics of the skull-brain interface. It evaluated the age and sex dependence and may lead to a better understanding of the protective role and mechanisms of the skull-brain interface in RHI and TBI, as well as improve the accuracy of computational models in simulating the skull-brain interface.


Subject(s)
Brain Injuries, Traumatic , Elasticity Imaging Techniques , Male , Humans , Female , Elasticity Imaging Techniques/methods , Biomechanical Phenomena , Sex Characteristics , Brain/diagnostic imaging , Skull/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Injuries, Traumatic/diagnostic imaging
4.
Front Oncol ; 11: 725320, 2021.
Article in English | MEDLINE | ID: mdl-35036353

ABSTRACT

The most common form of cancer among women in both developed and developing countries is breast cancer. The early detection and diagnosis of this disease is significant because it may reduce the number of deaths caused by breast cancer and improve the quality of life of those effected. Computer-aided detection (CADe) and computer-aided diagnosis (CADx) methods have shown promise in recent years for aiding in the human expert reading analysis and improving the accuracy and reproducibility of pathology results. One significant application of CADe and CADx is for breast cancer screening using mammograms. In image processing and machine learning research, relevant results have been produced by sparse analysis methods to represent and recognize imaging patterns. However, application of sparse analysis techniques to the biomedical field is challenging, as the objects of interest may be obscured because of contrast limitations or background tissues, and their appearance may change because of anatomical variability. We introduce methods for label-specific and label-consistent dictionary learning to improve the separation of benign breast masses from malignant breast masses in mammograms. We integrated these approaches into our Spatially Localized Ensemble Sparse Analysis (SLESA) methodology. We performed 10- and 30-fold cross validation (CV) experiments on multiple mammography datasets to measure the classification performance of our methodology and compared it to deep learning models and conventional sparse representation. Results from these experiments show the potential of this methodology for separation of malignant from benign masses as a part of a breast cancer screening workflow.

5.
Comput Biol Med ; 123: 103914, 2020 08.
Article in English | MEDLINE | ID: mdl-32768050

ABSTRACT

RATIONALE: The topic of sparse representation of samples in high dimensional spaces has attracted growing interest during the past decade. In this work, we develop sparse representation-based methods for classification of radiological imaging patterns of breast lesions into benign and malignant states. METHODS: We propose a spatial block decomposition method to address irregularities of the approximation problem and to build an ensemble of classifiers (CL) that we expect to yield more accurate numerical solutions than conventional whole-region of interest (ROI) sparse analyses. We introduce two classification decision strategies based on maximum a posteriori probability (BBMAP-S), or a log likelihood function (BBLL-S). RESULTS: To evaluate the performance of the proposed approach we used cross-validation techniques on imaging datasets with disease class labels. We utilized the proposed approach for separation of breast lesions into benign and malignant categories in mammograms. The level of difficulty is high in this application and the accuracy may depend on the lesion size. Our results indicate that the proposed integrative sparse analysis addresses the ill-posedness of the approximation problem, producing AUC (area under the receiver operating curve) value of 89.1% for randomized 30-fold cross-validation. CONCLUSIONS: Furthermore, our comparative experiments showed that the BBLL-S decision function may yield more accurate classification than BBMAP-S because BBLL-S accounts for possible estimation bias.


Subject(s)
Breast Neoplasms , Mammography , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans
6.
Artif Intell Med ; 107: 101885, 2020 07.
Article in English | MEDLINE | ID: mdl-32828443

ABSTRACT

The topic of sparse representation of samples in high dimensional spaces has attracted growing interest during the past decade. In this work, we develop sparse representation-based methods for classification of clinical imaging patterns into healthy and diseased states. We propose a spatial block decomposition method to address irregularities of the approximation problem and to build an ensemble of classifiers that we expect to yield more accurate numerical solutions than conventional sparse analyses of the complete spatial domain of the images. We introduce two classification decision strategies based on maximum a posteriori probability (BBMAP), or a log likelihood function (BBLL) and an approach to adjusting the classification decision criteria. To evaluate the performance of the proposed approach we used cross-validation techniques on imaging datasets with disease class labels. We first applied the proposed approach to diagnosis of osteoporosis using bone radiographs. In this problem we assume that changes in trabecular bone connectivity can be captured by intensity patterns. The second application domain is separation of breast lesions into benign and malignant categories in mammograms. The object classes in both of these applications are not linearly separable, and the classification accuracy may depend on the lesion size in the second application. Our results indicate that the proposed integrative sparse analysis addresses the ill-posedness of the approximation problem and produces very good class separation for trabecular bone characterization and for breast lesion characterization. Our approach yields higher classification rates than conventional sparse classification and previously published convolutional neural networks (CNNs) that we fine-tuned for our datasets, or utilized for feature extraction. The BBLL technique also produced higher classification rates than learners using hand-crafted texture features, and the Bag of Keypoints, which is a sophisticated patch-based method. Furthermore, our comparative experiments showed that the BBLL function may yield more accurate classification than BBMAP, because BBLL accounts for possible estimation bias.


Subject(s)
Mammography , Neural Networks, Computer , Breast/diagnostic imaging , Diagnosis, Differential , Humans
SELECTION OF CITATIONS
SEARCH DETAIL