Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Arch Microbiol ; 206(7): 292, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849633

ABSTRACT

In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Berberine , Chickens , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Gentamicins , Matrines , Microbial Sensitivity Tests , Poultry Diseases , Quinolizines , Animals , Gentamicins/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Berberine/pharmacology , Anti-Bacterial Agents/pharmacology , Quinolizines/pharmacology , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Alkaloids/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Virulence/drug effects , Drug Synergism
2.
Poult Sci ; 103(10): 104151, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39137499

ABSTRACT

Infection by multidrug-resistant avian pathogenic Escherichia coli (APEC) in chickens always leads to the uselessness of antibiotics, highlighting the need for alternative antibacterial agents. Sophora flavescens and Coptis chinensis have been a classical combination used together in Traditional Chinese Medicine (TCM) formulas to treat diseases with similar symptoms to colibacillosis for an extended period, but the effect of their active ingredients' combination on APEC infection remains unstudied. The objective of this study was to explore the synergistic effect of matrine and berberine hydrochloride on colibacillosis caused by an isolated multidrug-resistant APEC. In this study, a highly pathogenic E. coli was isolated from the liver of a diseased chicken in a farm suspected of colibacillosis, and it was resistant to multiple antibiotics. The LD50 of the strain was approximately 3.759×108 CFU/mL. The strain harbored several antibiotic resistance genes and virulence genes. Matrine and berberine hydrochloride have synergistic antibacterial effect against the isolated strain in vitro. The combined use of matrine and berberine hydrochloride exhibited synergistic effects in the treatment of APEC infection by regulating the organ indices, improving the pathological situation, decreasing the bacterial load, and regulating the inflammatory factors to enhance the survival rate of chickens in vivo. These results provided a foundation for revealing the effective effects and possible mechanisms of matrine and berberine hydrochloride as potential antimicrobial agents on diseases caused by multidrug-resistant APEC in chickens.

SELECTION OF CITATIONS
SEARCH DETAIL