Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nano Lett ; 24(5): 1642-1649, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38278518

ABSTRACT

Excess fat accumulation is not only associated with metabolic diseases but also negatively impacts physical appearance and emotional well-being. Bile acid, the body's natural emulsifier, is one of the few FDA-approved noninvasive therapeutic options for double chin (submental fat) reduction. Synthetic sodium deoxycholic acid (NaDCA) causes adipose cell lysis; however, its side effects include inflammation, bruising, and necrosis. Therefore, we investigated if an endogenous bile acid, chenodeoxycholic acid (CDCA), a well-known signaling molecule, can be beneficial without many of the untoward effects. We first generated CDCA-loaded nanoparticles to achieve sustained and localized delivery. Then, we injected them into the subcutaneous fat depot and monitored adipocyte size and mitochondrial function. Unlike NaDCA, CDCA did not cause cytolysis. Instead, we demonstrate that a single injection of CDCA-loaded nanoparticles into the subcutaneous fat reduced the adipocyte size by promoting fat burning and mitochondrial respiration, highlighting their potential for submental fat reduction.


Subject(s)
Chenodeoxycholic Acid , Deoxycholic Acid , Deoxycholic Acid/adverse effects , Adipocytes , Injections , Mitochondria
2.
Australas J Dermatol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031070

ABSTRACT

Infantile bullous pemphigoid (BP) is a rare autoantibody-mediated skin disorder. We report the effective treatment of a 6-month-old infant with BP using baricitinib, a Janus kinase (JAK) inhibitor, after failure with steroids and intravenous immunoglobulin. The patient achieved full remission and discontinued all medications without any relapses. To our knowledge, this is the first case of baricitinib used in an infant with BP.

3.
Nat Mater ; 20(4): 463-467, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33462463

ABSTRACT

When a temperature gradient is applied to a closed circuit comprising two different conductors, a charge current is generated via the Seebeck effect1. Here, we utilize the Seebeck-effect-induced charge current to drive 'transverse' thermoelectric generation, which has great potential for energy harvesting and heat sensing applications owing to the orthogonal geometry of the heat-to-charge-current conversion2-9. We found that, in a closed circuit comprising thermoelectric and magnetic materials, artificial hybridization of the Seebeck effect into the anomalous Hall effect10 enables transverse thermoelectric generation with a similar symmetry to the anomalous Nernst effect11-27. Surprisingly, the Seebeck-effect-driven transverse thermopower can be several orders of magnitude larger than the anomalous-Nernst-effect-driven thermopower, which is clearly demonstrated by our experiments using Co2MnGa/Si hybrid materials. The unconventional approach could be a breakthrough in developing applications of transverse thermoelectric generation.

4.
Sci Technol Adv Mater ; 23(1): 767-782, 2022.
Article in English | MEDLINE | ID: mdl-36386550

ABSTRACT

Transverse thermoelectric generation using magnetic materials is essential to develop active thermal engineering technologies, for which the improvements of not only the thermoelectric output but also applicability and versatility are required. In this study, using combinatorial material science and lock-in thermography technique, we have systematically investigated the transverse thermoelectric performance of Sm-Co-based alloy films. The high-throughput material investigation revealed the best Sm-Co-based alloys with the large anomalous Nernst effect (ANE) as well as the anomalous Ettingshausen effect (AEE). In addition to ANE/AEE, we discovered unique and superior material properties in these alloys: the amorphous structure, low thermal conductivity, and large in-plane coercivity and remanent magnetization. These properties make it advantageous over conventional materials to realize heat flux sensing applications based on ANE, as our Sm-Co-based films can generate thermoelectric output without an external magnetic field. Importantly, the amorphous nature enables the fabrication of these films on various substrates including flexible sheets, making the large-scale and low-cost manufacturing easier. Our demonstration will provide a pathway to develop flexible transverse thermoelectric devices for smart thermal management.

5.
Chemistry ; 27(65): 16173-16180, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34532908

ABSTRACT

A pair of meso-unsubstituted expanded carbaporphyrins containing two carbazole moieties were prepared in high isolated yields (82 and 76 %, respectively). The two macrocycles, namely 3 and 4, differ with respect to their substitution at the carbazole N-atoms i. e. by H and i-Bu, respectively. As prepared in their free-base forms, macrocycles 3 and 4 adopt figure-of-eight conformations and are best characterized as 40 π-electron, non-aromatic species possessing a decaphyrin(1.1.0.0.0.1.1.0.0.0) skeleton. Protonation of 3 with either trifluoroacetic acid (TFA) or perchloric acid (HClO4 ) produces a parallelogram-shaped structure. A similar structure is produced when N-functionalized system 4 is treated with TFA. In contrast, protonation of 4 with HClO4 leads it to adopt a twisted Möbius strip-like structure in the solid state, thus allowing access to three distinct conformational states as a function of the conditions.


Subject(s)
Porphyrins , Protons , Carbazoles , Molecular Conformation , Molecular Structure
6.
Appl Opt ; 60(22): 6554-6559, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34612893

ABSTRACT

We propose a novel optoelectronic oscillator (OEO) based on stimulated Brillouin scattering (SBS) and a Mach-Zehnder interferometer (MZI). The SBS and MZI form a microwave photonic filter (MPF), which completes the frequency selection of the OEO. The width of the MPF passband can be changed by adjusting the DC voltage of the MZI. When the gap between the passbands is aligned with the side mode, the side mode can be suppressed; in this way, a single-mode optoelectronic oscillator is achieved. Compared with the previous structure, the proposed structure is more stable and easier to integrate. A stable frequency signal at 9.4 GHz is obtained with a phase noise of -84.05dBc/Hz at 10 kHz, the side-mode-suppression ratio is 42 dB, and the frequency drift is below 50 kHz within 420 s. By adjusting the wavelength of the tunable laser source, a 280 MHz tuning range from 9.25 to 9.53 GHz is obtained. If an independent pump is introduced, a large tuning range is achieved from 9.4 to 24.9 GHz.

7.
Appl Opt ; 60(27): 8534-8539, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34612956

ABSTRACT

We propose a microwave photonic compressive sensing radar for distance and velocity measurement. First, a de-chirped signal that carries distance or velocity information is extracted between the transmitted and received signals in the proposed system. Then it is mixed with a pseudo-random bit sequence in the optical domain using a Mach-Zehnder modulator. After that, the de-chirped signal can be acquired by a photodetector and an analog-to-digital converter (ADC) at a sub-Nyquist sampling rate. Finally, a reconstruction algorithm can be used to recover the de-chirped signal. In our test, the bandwidth of ADC can be shortened from 2 GHz to 500 MHz, leading to a compression factor of four. A series of frequencies from 1.043 GHz to 1.875 GHz can be compressed with a 500-MHz ADC and recovered using a reconstruction algorithm. For a moving target, the Doppler frequency shift can be calculated, and the direction of the moving target can be distinguished. The maximum relative error of distance measurement is 0.21%. The maximum relative error of velocity measurement is 2.6%. The signal-to-noise ratio can be developed from ∼15dB to ∼30dB. This microwave photonic compressive sensing radar can achieve distance and velocity measurements using few samples. Also, it provides a large bandwidth of system operation and reduces data processing and storage pressure.

8.
Appl Opt ; 60(32): 10120-10123, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34807118

ABSTRACT

A photonic method to generate a dual-chirp microwave waveform (DCMW) is proposed and demonstrated by utilizing a stimulated Brillouin scattering based optoelectronic oscillator and a frequency scanning laser source (FSLS). There are no radio frequency sources or Mach-Zehnder modulators in the proposed structure, which makes the system simple and stable. In the experiment, an alternative scheme is utilized to replace the FSLS, and the DCMW signal with a central frequency of 4.69 GHz is generated; the bandwidth of the generated DCMW signal is up to 7 GHz and the chirp rate up to ±5.3GHz/µs. The autocorrelation and ambiguity function of the generated signal are also investigated and show good performance of pulse compression and reduction of range-Doppler coupling.

9.
J Cell Physiol ; 233(4): 3465-3475, 2018 04.
Article in English | MEDLINE | ID: mdl-28926104

ABSTRACT

The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation.


Subject(s)
Cell Proliferation/drug effects , Energy Metabolism/drug effects , Glucose/pharmacology , Intestinal Mucosa/drug effects , Stem Cells/drug effects , Animals , Glucose/metabolism , Glycolysis/drug effects , Intestinal Mucosa/metabolism , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Stem Cells/metabolism
10.
Opt Lett ; 43(20): 4915-4918, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30320782

ABSTRACT

We present a novel and simple scheme for photonic generation of a millimeter-wave ultrawideband (UWB) signal free of low-frequency components that is implemented by using a stimulated Brillouin scattering (SBS)-based frequency-doubling method. A dual-parallel Mach-Zehnder modulator is incorporated to generate appropriate optical sidebands and an optical carrier carrying the UWB signal. Then the single-sideband modulation is realized based on the successive SBS frequency shifting process. Eventually, a UWB signal is upconverted to twice the frequency of the radio frequency signal. To vindicate the feasibility of the proposed scheme, an experiment is carried out, and it turns out that a UWB signal with a bandwidth of 7 GHz is upconverted to 21.75 GHz. The spectrum of the generated signal meets well with the Federal Communications Commission mask.

11.
Phys Rev Lett ; 121(16): 167202, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387670

ABSTRACT

In this Letter, we show the demonstration of a sequential antiferromagnetic memory operation with a spin-orbit-torque write, by the spin Hall effect, and a resistive read in the CoGd synthetic antiferromagnetic bits, in which we reveal the distinct differences in the spin-orbit-torque and field-induced switching mechanisms of the antiferromagnetic moment, or the Néel vector. In addition to the comprehensive spin torque memory operation, our thorough investigations also highlight the high immunity to a field disturbance as well as a memristive behavior of the antiferromagnetic bits.

14.
Chem Commun (Camb) ; 60(7): 779-792, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38126398

ABSTRACT

The effective capture of radioiodine is vital to the development of the nuclear industry and ecological environmental protection. There is, therefore, a continuously growing research exploration in various types of solid-state materials for iodine capture. During the last decade, the potential of using macrocycle and cage-based supramolecular materials in effective uptake and separation of radioactive iodine has been demonstrated. Interest in the application of these materials in iodine capture originates from their diversified porous characteristics, abundant host-guest chemistry, high iodine affinity and adsorption capacity, high stability in various environments, facile modification and functionalization, and intrinsic structural flexibility, among other attributes. Herein, recent progress in macrocycle and cage-based solid-state materials, including pure discrete macrocycles and cages, and their polymeric forms, for iodine capture is summarized and discussed with an emphasis on iodine capture capacities, mechanisms, and design strategies.

15.
Adv Sci (Weinh) ; 11(18): e2308543, 2024 May.
Article in English | MEDLINE | ID: mdl-38447187

ABSTRACT

Transverse thermoelectric generation converts temperature gradient in one direction into an electric field perpendicular to that direction and is expected to be a promising alternative in creating simple-structured thermoelectric modules that can avoid the challenging problems facing traditional Seebeck-effect-based modules. Recently, large transverse thermopower has been observed in closed circuits consisting of magnetic and thermoelectric materials, called the Seebeck-driven transverse magneto-thermoelectric generation (STTG). However, the closed-circuit structure complicates its broad applications. Here, STTG is realized in the simplest way to combine magnetic and thermoelectric materials, namely, by stacking a magnetic layer and a thermoelectric layer together to form a bilayer. The transverse thermopower is predicted to vary with changing layer thicknesses and peaks at a much larger value under an optimal thickness ratio. This behavior is verified in the experiment, through a series of samples prepared by depositing Fe-Ga alloy thin films of various thicknesses onto n-type Si substrates. The measured transverse thermopower reaches 15.2 ± 0.4 µV K-1, which is a fivefold increase from that of Fe-Ga alloy and much larger than the current room temperature record observed in Weyl semimetal Co2MnGa. The findings highlight the potential of combining magnetic and thermoelectric materials for transverse thermoelectric applications.

16.
Front Immunol ; 15: 1367958, 2024.
Article in English | MEDLINE | ID: mdl-39055710

ABSTRACT

Objectives: Numerous observational studies have reported associations between circulating cytokines and atopic dermatitis (AD); however, the causal relationships between them remain unclear. To explore the causal correlations and direction of causal effects between AD and levels of 91 circulating cytokines. Methods: Two-sample Mendelian randomization (MR) analyses were conducted to examine the causal relationships between 91 circulating cytokines and AD using summary statistics from genome-wide association studies (GWAS). Reverse MR analyses were performed to investigate reverse causation. Pleiotropy and heterogeneity tests were conducted to assess the robustness of the findings. Additional transcriptome database and clinical peripheral blood mononuclear cells (PBMCs) samples were utilized to validate the results of MR analyses. Results: Levels of interleukin (IL)-13, IL-18 Receptor 1, Tumor necrosis factor ligand superfamily member 14 (TNFSF14), TNF-related activation-induced cytokine (TRANCE), C-X-C motif chemokine (CXCL)11, IL-33, TNF-beta and CD5 were suggestively associated with the risk of AD (odds ratio, OR: 1.202, 95% CI: 1.018-1.422, p = 0.030; OR: 1.029, 95% CI: 1.029-1.157, p = 0.004; OR: 1.159, 95% CI: 1.018-1.320, p = 0.026; OR: 1.111, 95% CI: 1.016-1.214, p = 0.020; OR: 0.878, 95% CI: 0.783-0.984, p = 0.025; OR: 0.809, 95% CI: 0.661-0.991, p = 0.041; OR: 0.945, 95% CI: 0.896-0.997, p = 0.038; OR: 0.764, 95% CI: 0.652-0.895, p = 8.26e-04). In addition, levels of cytokines including Axin-1, CXCL5, CXCL10, Oncostatin-M (OSM), Sulfotransferase 1A1 (SULT1A1) and TNFSF14 were suggested to be consequences of AD (Beta: -0.080, p = 0.016; Beta: -0.062, p = 0.036; Beta: -0.066, p = 0.049; Beta: -0.073, p = 0.013; Beta: -0.089, p = 0.008; Beta: -0.079, p = 0.031). IL-13, IL-18R1, TNFSF14, and TRANCE were upregulated in both lesional skin biopsies and PBMCs from AD patients. Conclusion: The study indicates that several cytokines, including IL-13, IL-18R1, TNFSF14, TRANCE, CXCL11, IL-33, TNF-beta, and CD5, are upstream of AD development, whereas a few circulating cytokines are potentially downstream in the development of AD.


Subject(s)
Cytokines , Dermatitis, Atopic , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Cytokines/blood , Dermatitis, Atopic/blood , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
17.
JHEP Rep ; 5(5): 100714, 2023 May.
Article in English | MEDLINE | ID: mdl-37122689

ABSTRACT

Background & Aims: Although fat loss is observed in patients with cholestasis, how chronically elevated bile acids (BAs) impact white and brown fat depots remains obscure. Methods: To determine the direct effect of pathological levels of BAs on lipid accumulation and mitochondrial function, primary white and brown adipocyte cultures along with fat depots from two separate mouse models of cholestatic liver diseases, namely (i) genetic deletion of farnesoid X receptor (Fxr); small heterodimer (Shp) double knockout (DKO) and (ii) injury by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), were used. Results: As expected, cholestatic mice accumulate high systemic BA levels and exhibit fat loss. Here, we demonstrate that chronic exposure to pathological BA levels results in mitochondrial dysfunction and defective thermogenesis. Consistently, both DKO and DDC-fed mice exhibit lower body temperature. Importantly, thermoneutral (30 °C) housing of the cholestatic DKO mice rescues the decrease in brown fat mass, and the expression of genes responsible for lipogenesis and regulation of mitochondrial function. To overcome systemic effects, primary adipocyte cultures were treated with pathological BA concentrations. Mitochondrial permeability and respiration analysis revealed that BA overload is sufficient to reduce mitochondrial function in primary adipocytes, which is not as a result of cytotoxicity. Instead, we found robust reductions in uncoupling protein 1 (Ucp1), PR domain containing 16 (Prdm16), and deiodinase, iodothyronine, type II (Dio2) transcripts in brown adipocytes upon treatment with chenodeoxycholic acid, whereas taurocholic acid led to the suppression of Dio2 transcript. This BA-mediated decrease in transcripts was alleviated by pharmacological activation of UCP1. Conclusions: High concentrations of BAs cause defective thermogenesis by reducing the expression of crucial regulators of mitochondrial function, including UCP1, which may explain the clinical features of hypothermia and fat loss observed in patients with cholestatic liver diseases. Impact and Implications: We uncover a detrimental effect of chronic bile acid overload on adipose mitochondrial function. Pathological concentration of different BAs reduces the expression of distinct genes involved in energy expenditure, which can be mitigated with pharmacological UCP1 activation.

18.
Mol Cell Endocrinol ; 549: 111616, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35304191

ABSTRACT

Farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates bile acid homeostasis along with nutrient metabolism. In addition to the gastrointestinal (GI) tract, FXR expression has been widely noted in kidney, adrenal gland, pancreas, adipose, skeletal muscle, heart, and brain. Except for the liver and gut, the relevance of FXR signaling in metabolism in other tissues remains poorly understood. This review examines the classical and non-canonical tissue-specific roles of FXR in regulating, lipids, and glucose homeostasis under normal and diseased states. FXR activation has been reported to be protective against cholestasis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), type 2 diabetes, cardiovascular and kidney diseases. Several ongoing clinical trials are investigating FXR ligands as a therapeutic target for primary biliary cholangitis (PBC) and NASH, which substantiate the significance of FXR signaling in modulating metabolic processes. This review highlights that FXR ligands, albeit an attractive therapeutic target for treating metabolic diseases, tissue-specific modulation of FXR may be the key to overcoming some of the adverse clinical effects.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Ligands , Lipid Metabolism , Lipids , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
19.
Chem Sci ; 13(3): 692-697, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35173933

ABSTRACT

The meso-unsubstituted expanded porphyrinoid 3, incorporating two carbazole moieties, acts as an effective ligand for Co(ii) and permits the isolation and X-ray diffraction-based characterization of a 6 : 3 metal-to-ligand metallocage complex that converts spontaneously to the constituent 2 : 1 metal-to-ligand metalloring species in chloroform solution. The discrete metalloring is formed directly when the Co(ii) complex is crystallized from supersaturated solutions, whereas crystallization from more dilute solutions favors the metallocage. Studies with two other test cations, Pd(ii) and Zn(ii), revealed exclusive formation of the monomeric metalloring complexes with no evidence of higher order species being formed. Structural, electrochemical and UV-vis-NIR absorption spectral studies provide support for the conclusion that the Pd(ii) complex is less distorted and more effectively conjugated than its Co(ii) and Zn(ii) congeners, an inference further supported by TD-DFT calculations. The findings reported here underscore how expanded porphyrins can support coordination modes, including bimetallic complexes and self-assembled cage structures, that are not necessarily easy to access using more traditional ligand systems.

20.
Chem Sci ; 13(24): 7276-7282, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35799810

ABSTRACT

A fully conjugated cryptand-like bicyclic porphyrinoid ligand 4, incorporating three carbazole linkages and four dipyrrin moieties, was prepared via the acid-catalysed condensation of an extended 2,2'-bipyrrole analogue containing a central carbazole moiety and 3,4-diethyl-2,5-diformylpyrrole in 79% isolated yield. This new cryptand-like system acts as an effective ligand and allows for complexation of BF2 (boron difluoride) subunits. Three BODIPY arrays, containing two, three, and four BF2 subunits, namely 4·2BF2, 4·3BF2 and 4·4BF2, could thus be isolated from the reaction of 4 with BF3·Et2O in the presence of triethylamine at 110 °C, albeit in relatively low yield. As prepared, bicycle 4 is characterized by a rigid C 2 symmetric structure as inferred from VT NMR spectroscopic analyses. In contrast, the three BODIPY-like arrays produced as the result of BF2 complexation are conformationally flexible and unsymmetric in nature as deduced from similar analyses. All four products, namely 4, 4·2BF2, 4·3BF2 and 4·4BF2, were characterized by means of single crystal X-ray diffraction analyses. Tetramer 4·4BF2 gives rise to a higher extinction coefficient (by 2.5 times) relative to the bis- and tris-BODIPY arrays 4·2BF2 and 4·3BF2. This was taken as evidence for stronger excitonic coupling in the case of 4·4BF2. All three BODIPY-like arrays proved nearly non-fluorescent, as expected given their conformationally mobile nature. The efficiency of reactive oxygen species (ROS) generation was also determined for the new BODIPY arrays of this study.

SELECTION OF CITATIONS
SEARCH DETAIL