Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chemistry ; 30(37): e202400945, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38690799

ABSTRACT

The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054 % per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.

2.
J Autoimmun ; 104: 102333, 2019 11.
Article in English | MEDLINE | ID: mdl-31564474

ABSTRACT

During host immune response, an initial and sufficient activation is required to avoid infection and cancer, yet an excessive activation bears the risk of autoimmune reactivity and disease development. This fastidious balance of the immune system is regulated by co-stimulatory and co-inhibitory molecules, also known as immune checkpoints. Both excessive co-stimulation and insufficient co-inhibition can induce the activation and proliferation of autoreactive cells that may lead to the development of autoimmune diseases. During the last decade, a growing number of new immune checkpoint receptors and ligands have been discovered, providing an attractive approach to investigate their implication in the pathogenesis of autoimmune diseases and their potential role as targets for effective therapeutic interventions. In this review, we focus on the roles and underlying mechanisms of co-stimulatory and co-inhibitory receptors and other molecules that function as immune checkpoints in autoimmune diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, Sjögren's syndrome, type I diabetes and inflammatory bowel disease. We also summarize previous and current clinical trials targeting these checkpoint pathways in autoimmune diseases and discuss further therapeutic implications and possible risks and challenges.


Subject(s)
Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Signal Transduction/immunology , Animals , Autoimmune Diseases/pathology , Humans
3.
Dalton Trans ; 53(8): 3611-3620, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289157

ABSTRACT

Due to its large capacity and relatively high conductivity, cobalt sulfide has been considered an excellent electrode material for lithium-ion batteries, but its extreme volume change during charging and discharging and lower conductivity than graphite limits its development. In this work, composite nanosheets of MXene and N-doped carbon-confined cobalt sulfide nanosheets (CoS@NC/MXene) were synthesized by growing the Co metal-organic framework of ZIF-67 onto MXene sheets, followed by sulfidation treatment. Different from normal ZIF-67 generally prepared in methanol, this work fabricates ZIF-67 in aqueous solution, which induces ZIF-67 to undergo some degree of hydrolysis and form more dispersed Co layered hydroxides mounted onto MXene. Also, the MXene incorporation imparts better water stability to ZIF-67(Co) and helps maintain its morphology during the sulfidation. CoS@NC/MXene has a conductive network supported by MXene and enhanced by NC, as well as a 3D hierarchical porous structure offered by the rational combination of its components. These favorable characteristics allow CoS@NC/MXene to deliver a capacity of 691 mA h g-1 at 200 mA g-1 in the 100th cycle and retain the specific capacity of 382 mA h g-1 at a higher current density of 8000 mA g-1.

4.
J Colloid Interface Sci ; 657: 63-74, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38035420

ABSTRACT

Bimetallic sulfide NiCo2S4 has been regarded as a potential supercapacitor electrode material with excellent electrochemical performance. However, the origin of its high specific capacity is little studied, and the design of a rational structure still remains a challenge to exert its intrinsic advantage. In this work, the advantage of NiCo2S4 over NiS and CoS is explained by density functional theory calculation from the aspects of energy band, density of electronic states and OH- adsorption energy. It is proved that the synergistic effect of Ni and Co in NiCo2S4 can reduce its OH- adsorption energy and provide more active electrons near the Fermi level, thus promoting electrochemical reaction kinetics in supercapacitors. Then, a simple electrospinning method is used to in-situ load mono-disperse NiCo2S4 nanocrystals within amorphous carbon nanofibers, obtaining a porous, lotus-leaf-stem-like one-dimensional nanocomposite of NiCo2S4/CNF. Ex-situ XPS characterization confirms that the proportion of metal ions involved in electrochemical reactions and the number of transferred electrons in NiCo2S4/CNF during the redox reaction are significantly higher than those in mono-metallic sulfides (NiS/CNF and CoS/CNF), verifying the calculation results. With its boosting reaction kinetics, the NiCo2S4/CNF gives the specific capacity of 757.97C g-1 at 1 A/g and the capacity retention of 95.15 % after 10,000 cycles at 5 A/g, both greater than NiS/CNF and CoS/CNF. The NiCo2S4/CNF, as the positive electrode, and activated carbon, as the negative electrode, are assembled into liquid-state and solid-state asymmetric supercapacitor (ASC) devices, and both show high power density (760.6 W kg-1 for liquid-state device and 1067.4 W kg-1 for solid-state device), high energy density (52.25 Wh kg-1 for liquid-state device and 48.54 Wh kg-1 for solid-state device) and great cycle stability. Moreover, the solid-state ASC device possesses excellent low temperature capacity and reversibility, further demonstrating the wide application potential of the NiCo2S4/CNF composite.

5.
Curr Eye Res ; 49(10): 1098-1106, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38783634

ABSTRACT

PURPOSE: Microglia-related inflammation is closely linked to the pathogenesis of retinal diseases. The primary objective of this research was to investigate the impact and mechanism of M1 phenotype microglia on the barrier function of retina microvascular endothelial cells. METHODS: Quantitative polymerase chain reactions and western blot techniques were utilized to analysis the mRNA and protein expressions of M1 and M2 markers of human microglial clone 3 cell line (HMC3), as well as the levels of Notch ligands and receptors under the intervention of lipopolysaccharide (LPS) or interleukin (IL)-4. ELISA was utilized to detect the pro-inflammatory and anti-inflammatory cytokines from HMC3 cells. The cellular tight junction and apoptosis of human retinal microvascular endothelial cells (HRMECs) were assessed by western blot and fluorescein isothiocyanate-dextran permeability assay. The inhibitors of Notch1 and RNA interference (RNAi) targeting Jagged1 were used to assess their contribution to the barrier function of vascular endothelial cells. RESULTS: Inducible nitric oxide synthase (iNOS) and IL-1ß were considerably elevated in LPS-treated HMC3, while CD206 and Arg-1 markedly elevated under IL-4 stimulation. The conditioned medium derived from LPS-treated HMC3 cells promoted permeability, diminished the expression of zonula occludens-1 and Occludin, and elevated the expression of Cleaved caspase-3 in HRMECs. RNAi targeting Jagged1 or Notch1 inhibitor could block M1 HMC3 polarization and maintain barrier function of HRMECs. CONCLUSION: Our findings suggest that Jagged1-Notch1 signaling pathway induces M1 microglial cells to disrupt the barrier function of HRMECs, which may lead to retinal diseases.


Subject(s)
Blotting, Western , Jagged-1 Protein , Microglia , Receptor, Notch1 , Retinal Vessels , Signal Transduction , Humans , Microglia/metabolism , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Signal Transduction/physiology , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Retinal Vessels/cytology , Retinal Vessels/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Endothelial Cells/metabolism , Blood-Retinal Barrier , Apoptosis , Real-Time Polymerase Chain Reaction , Endothelium, Vascular/metabolism
6.
Nat Commun ; 15(1): 2936, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580644

ABSTRACT

Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease characterized by autoreactive T cell response against intrahepatic small bile ducts. Here, we use Il12b-/-Il2ra-/- mice (DKO mice) as a model of autoimmune cholangitis and demonstrate that Cd8a knockout or treatment with an anti-CD8α antibody prevents/reduces biliary immunopathology. Using single-cell RNA sequencing analysis, we identified CD8+ tissue-resident memory T (Trm) cells in the livers of DKO mice, which highly express activation- and cytotoxicity-associated markers and induce apoptosis of bile duct epithelial cells. Liver CD8+ Trm cells also upregulate the expression of several immune checkpoint molecules, including PD-1. We describe the development of a chimeric antigen receptor to target PD-1-expressing CD8+ Trm cells. Treatment of DKO mice with PD-1-targeting CAR-T cells selectively depleted liver CD8+ Trm cells and alleviated autoimmune cholangitis. Our work highlights the pathogenic role of CD8+ Trm cells and the potential therapeutic usage of PD-1-targeting CAR-T cells.


Subject(s)
Autoimmune Diseases , Cholangitis , Liver Cirrhosis, Biliary , Mice , Animals , Liver Cirrhosis, Biliary/therapy , Immunotherapy, Adoptive , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Cholangitis/therapy , Autoimmune Diseases/genetics
7.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-36881472

ABSTRACT

Primary Sjögren's syndrome (pSS) is a systemic autoimmune inflammatory disease mainly defined by T cell-dominated destruction of exocrine glands. Currently, CD8+ T cells are thought to be involved in the pathogenesis of pSS. However, the single-cell immune profiling of pSS and molecular signatures of pathogenic CD8+ T cells have not been well elucidated. Our multiomics investigation showed that both T cells and B cells, especially CD8+ T cells, were undergoing significant clonal expansion in pSS patients. TCR clonality analysis revealed that peripheral blood granzyme K+ (GZMK+) CXCR6+CD8+ T cells had higher a proportion of clones shared with CD69+CD103-CD8+ tissue-resident memory T (Trm) cells in labial glands in pSS. CD69+CD103-CD8+ Trm cells featured by high expression of GZMK were more active and cytotoxic in pSS compared with their CD103+ counterparts. Peripheral blood GZMK+CXCR6+CD8+ T cells with higher CD122 expression were increased and harbored a gene signature similar to Trm cells in pSS. Consistently, IL-15 was significantly elevated in pSS plasma and showed the capacity to promote differentiation of CD8+ T cells into GZMK+CXCR6+CD8+ T cells in a STAT5-dependent manner. In summary, we depicted the immune profile of pSS and further conducted comprehensive bioinformatics analysis and in vitro experimental investigations to characterize the pathogenic role and differentiation trajectory of CD8+ Trm cells in pSS.


Subject(s)
Sjogren's Syndrome , Humans , CD8-Positive T-Lymphocytes , Cell Differentiation , Granzymes/metabolism , Salivary Glands, Minor , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL