Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nanotechnology ; 33(22)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35180711

ABSTRACT

Gold (Au) can be used as an ideal metal electrocatalyst for ethanol and glucose oxidation reactions due to its high performance-to-cost ratio. In this paper, the Au aerogel with high-index facets was synthesized by using the laser ablation in liquid technology, which can improve the electrocatalytic activity of Au. The as-prepared Au aerogel showed excellent mass activity and specific activity toward ethanol oxidation reaction, which are 4.6 times and 2.1 times higher than Au/C, respectively. The 3D porous nature and rich defect of the Au aerogel provide more active sites. In addition, the high-index facets with under-coordinated atoms enhance the adsorption of ethanol and glucose molecules, thus improving the intrinsic catalytic activity of Au aerogel. The effect of high-index facets has also been investigated by density functional theory calculations. Furthermore, the Au aerogels also show good electrocatalytic activity and stability toward glucose oxidation reaction. These results are conducive to promote the practical application of Au in electrocatalysis.

2.
Opt Express ; 29(23): 38053-38067, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808865

ABSTRACT

MoS2-plasmonic hybrid platforms have attracted significant interest in surface-enhanced Raman scattering (SERS) and plasmon-driven photocatalysis. However, direct contact between the metal and MoS2 creates strain that deteriorates the electron transport across the metal/ MoS2 interfaces, which would affect the SERS effect and the catalytic performance. Here, the MoS2/graphene van der Waals heterojunctions (vdWHs) were fabricated and combined with two-layered gold nanoparticles (Au NP) for SERS and plasmon-driven photocatalysis analyse. The graphene film is introduced to provide an effective buffer layer between Au NP and MoS2, which not only eliminates the inhomogeneous contact on MoS2 but also benefits the electron transfer. The substrate exhibits excellent SERS capability realizing ultra-sensitive detection for 4-pyridinethiol molecules. Also, the surface catalytic reaction of p-nitrothiophenol (PNTP) to p,p-dimercaptobenzene (DMAB) conversion was in situ monitored, demonstrating that the vdWHs-plasmonic hybrid could effectively accelerate reaction process. The mechanism of the SERS and catalytic behaviors are investigated via experiments combined with theoretical simulations (finite element method and quantum chemical calculations).

3.
Opt Express ; 29(2): 1360-1370, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726353

ABSTRACT

Film wrap nanoparticle system (FWPS) is proposed and fabricated to perform SERS effect, where the Ag nanoparticle was completely wrapped by Au film and the double-layered graphene was selected as the sub-nano spacer. In this system, the designed nanostructure can be fully rather than partly used to generate hotspots and absorb probe molecules, compared to the nanoparticle to nanoparticle system (PTPS) or nanoparticle to film system (PTFS). The optimal fabricating condition and performance of this system were studied by the COMSOL Multiphysics. The simulation results show that the strongly large-scale localized electromagnetic field appears in the whole space between the Ag nanoparticle and Au film. The experimental results show that the FWPS presents excellent sensitivity (crystal violet (CV): 10-11 M), uniformity, stability and high enhancement factor (EF: 2.23×108). Malachite green (MG; 10-10 M) on the surface of fish and DNA strands with different base sequence (A, T, C) were successfully detected. These advanced results indicate that FWPS is highly promising to be applied for the detection of environmental pollution and biomolecules.


Subject(s)
DNA/analysis , Gentian Violet/analysis , Graphite/chemistry , Metal Nanoparticles/chemistry , Rosaniline Dyes/analysis , Spectrum Analysis, Raman/methods , Water Pollutants, Chemical/analysis , Animals , Fishes/physiology , Silver/chemistry
4.
Nanoscale ; 15(4): 1554-1560, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36519784

ABSTRACT

Improving the activity and stability of electrocatalysts for the hydrogen evolution reaction (HER) plays an essential role in the practical application of electrochemical water splitting under alkaline conditions. Here, trace Pd-doped Ru nanoparticles have been achieved using the pulsed laser ablation in liquid technology, which exhibit efficient HER catalytic performance. It is evidenced that the Pd doping amount is maintained at a trace level and increases nonlinearly with the concentration of the Pd precursor. Molecular dynamics simulations demonstrate that the trace doping of Pd is due to the slow thermal decomposition rate of the Pd precursor. This work improves the mechanistic explanation of the metal doping induced by liquid-phase laser ablation, which may promote the fabrication and application of advanced laser-based nanostructures.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121159, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35306305

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is an ultra-sensitive analytical tool that can effectively detect and identify molecules by their unique vibrational fingerprints. Development of SERS substrates with good stability, high sensitivity and reproducibility is still a big challenge in practical applications. Recently, 2D materials/metallic hybrid SERS substrates provide a new prospect to improve the SERS performance. Here, we obtain a monolayer MoS2 covered silver nanoparticle (AgNP) array as a high-performance SERS substrate. Annealing temperature-dependent SERS signals on the hybrid substrate have been explored. The optimum SERS performance was obtained at 290 ℃ (the detection limit of 10-13 M for Rhodamine 6G and the corresponding SERS enhancement factor of 8.3 × 109), which is attributed to the better contact between AgNPs and MoS2 and the uniform AgNPs with appropriate particle sizes. The prepared MoS2/AgNPs hybrid substrates also have been utilized to detect various molecules, which demonstrates a great potential for applications in food safety and biochemical environmental detection.


Subject(s)
Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Molybdenum , Reproducibility of Results , Silver/chemistry , Spectrum Analysis, Raman/methods , Temperature
6.
Talanta ; 233: 122481, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215109

ABSTRACT

Three-dimensional (3D) SERS substrate with the denser "hotspots" is synthesized by the constriction of PDMS film decorated with sandwiched graphene@AgNPs@graphene (G@AgNPs@G) nanostructure. Graphene layers above and below the AgNPs are used to absorb molecules onto the "hotspots", and prevent the oxidation of AgNPs in our design. PDMS films can be easily shrunk for 3D structures, causing advantages in enhancement ability and light-matter interaction. Benefiting from the above advantages, a detection limit of 10-14 M (CV) and enhancement factor (EF) of 3.9 × 109 were obtained in our experiment. Theoretical analyses (FDTD) were also used to study the enhancement mechanism. For practical purposes, in-situ detection of MG molecules on the fish surface and the label-free detection of DNA base of adenine (A) and cytosine (C) were also studied. The high enhancement factor, great sensitivity, reliability, and stability of substrate reasonably proved that it can be used as an excellent SERS substrate for biomolecular detection.


Subject(s)
Graphite , Metal Nanoparticles , Nanostructures , Animals , Reproducibility of Results , Spectrum Analysis, Raman
7.
Talanta ; 223(Pt 2): 121766, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298276

ABSTRACT

Room-temperature plasma treated graphene based FET was firstly proposed for the DNA hybridization detection. Affinity and electrical properties of the graphene based DNA-FET sensor were studied and improved benefits from the surface modification. The facile room-temperature Ar plasma easily removes residues from the graphene surface and changes the hydrophilic properties of graphene, which is important for our solution gated DNA-FET sensor. Limit of the detection of below 10 aM is obtained in our experiment. Especially, DNA concentration (CDNA)/the amount of net drain current (ΔI) and the negative shift in the VCNP value of the GFET sensor with the plasma treated 30 s are all improved compared with that without treatment. It shows that the easily plasma treatment of the graphene surface can be used for the solution gated FET sensor.


Subject(s)
Biosensing Techniques , Graphite , DNA/genetics , Nucleic Acid Hybridization , Transistors, Electronic
8.
Nanomaterials (Basel) ; 10(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183019

ABSTRACT

Most previous studies relating to surface-enhanced Raman spectroscopy (SERS) signal enhancement were focused on the interaction between the light and the substrate in the x-y axis. 3D SERS substrates reported in the most of previous papers could contribute partial SERS enhancement via z axis, but the increases of the surface area were the main target for those reports. However, the z axis is also useful in achieving improved SERS intensity. In this work, hot spots along the z axis were specifically created in a sandwich nanofilm. Sandwich nanofilms were prepared with self-assembly and Langmuir-Blodgett techniques, and comprised of monolayer Au nanorings sandwiched between bottom Ag mirror and top Ag cover films. Monolayer Au nanorings were formed by self-assembly at the interface of water and hexane, followed by Langmuir-Blodgett transfer to a substrate with sputtered Ag mirror film. Their hollow property allows the light transmitted through a cover film. The use of a Ag cover layer of tens nanometers in thickness was critical, which allowed light access to the middle Au nanorings and the bottom Ag mirror, resulting in more plasmonic resonance and coupling along perpendicular interfaces (z-axis). The as-designed sandwich nanofilms could achieve an overall ~8 times SERS signals amplification compared to only the Au nanorings layer, which was principally attributed to enhanced electromagnetic fields along the created z-axis. Theoretical simulations based on finite-difference time-domain (FDTD) method showed consistent results with the experimental ones. This study points out a new direction to enhance the SERS intensity by involving more hot spots in z-axis in a designer nanostructure for high-performance molecular recognition and detection.

9.
Polymers (Basel) ; 12(2)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050477

ABSTRACT

This paper introduces a three-dimensional (3D) pyramid to the polymers-plasmonic hybrid structure of polymethyl methacrylate (PMMA) composite silver nanoparticle (AgNPs) as a higher quality flexible surface-enhanced Raman scattering (SERS) substrate. Benefiting from the effective oscillation of light inside the pyramid valley could provide wide distributions of 3D "hot spots" in a large space. The inclined surface design of the pyramid structure could facilitate the aggregation of probe molecules, which achieves highly sensitive detection of rhodamine 6G (R6G) and crystal violet (CV). In addition, the AgNPs and PMMA composite structures provide uniform space distribution for analyte detection in a designated hot spot zone. The incident light can penetrate the external PMMA film to trigger the localized plasmon resonance of the encapsulated AgNPs, achieving enormous enhancement factor (~ 6.24 × 10 8 ). After undergoes mechanical deformation, the flexible SERS substrate still maintains high mechanical stability, which was proved by experiment and theory. For practical applications, the prepared flexible SERS substrate is adapted to the in-situ Raman detection of adenosine aqueous solution and the methylene-blue (MB) molecule detection of the skin of a fish, providing a direct and nondestructive active-platform for the detecting on the surfaces with any arbitrary morphology and aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL