Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Eur Radiol ; 34(4): 2576-2589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37782338

ABSTRACT

OBJECTIVES: To develop a radiomics model in contrast-enhanced cone-beam breast CT (CE-CBBCT) for preoperative prediction of axillary lymph node (ALN) status and metastatic burden of breast cancer. METHODS: Two hundred and seventy-four patients who underwent CE-CBBCT examination with two scanners between 2012 and 2021 from two institutions were enrolled. The primary tumor was annotated in each patient image, from which 1781 radiomics features were extracted with PyRadiomics. After feature selection, support vector machine models were developed to predict ALN status and metastatic burden. To avoid overfitting on a specific patient subset, 100 randomly stratified splits were made to assign the patients to either training/fine-tuning or test set. Area under the receiver operating characteristic curve (AUC) of these radiomics models was compared to those obtained when training the models only with clinical features and combined clinical-radiomics descriptors. Ground truth was established by histopathology. RESULTS: One hundred and eighteen patients had ALN metastasis (N + (≥ 1)). Of these, 74 had low burden (N + (1~2)) and 44 high burden (N + (≥ 3)). The remaining 156 patients had none (N0). AUC values across the 100 test repeats in predicting ALN status (N0/N + (≥ 1)) were 0.75 ± 0.05 (0.67~0.93, radiomics model), 0.68 ± 0.07 (0.53~0.85, clinical model), and 0.74 ± 0.05 (0.67~0.88, combined model). For metastatic burden prediction (N + (1~2)/N + (≥ 3)), AUC values were 0.65 ± 0.10 (0.50~0.88, radiomics model), 0.55 ± 0.10 (0.40~0.80, clinical model), and 0.64 ± 0.09 (0.50~0.90, combined model), with all the ranges spanning 0.5. In both cases, the radiomics model was significantly better than the clinical model (both p < 0.01) and comparable with the combined model (p = 0.56 and 0.64). CONCLUSIONS: Radiomics features of primary tumors could have potential in predicting ALN metastasis in CE-CBBCT imaging. CLINICAL RELEVANCE STATEMENT: The findings support potential clinical use of radiomics for predicting axillary lymph node metastasis in breast cancer patients and addressing the limited axilla coverage of cone-beam breast CT. KEY POINTS: • Contrast-enhanced cone-beam breast CT-based radiomics could have potential to predict N0 vs. N + (≥ 1) and, to a limited extent, N + (1~2) vs. N + (≥ 3) from primary tumor, and this could help address the limited axilla coverage, pending future verifications on larger cohorts. • The average AUC of radiomics and combined models was significantly higher than that of clinical models but showed no significant difference between themselves. • Radiomics features descriptive of tumor texture were found informative on axillary lymph node status, highlighting a higher heterogeneity for tumor with positive axillary lymph node.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Lymphatic Metastasis/pathology , Axilla/pathology , Radiomics , Retrospective Studies , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Cone-Beam Computed Tomography
2.
Opt Lett ; 48(19): 5061-5064, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773385

ABSTRACT

The crucial zero-order light due to the pixelation effect of spatial light modulator (SLM) has been a serious issue in the field of light modulation, especially in applications with a high numerical aperture optical system. In this investigation, we report that by properly adjusting the high-level and low-level pixel voltages of an SLM, the zero-order light caused by the pixelation effect of an SLM can be significantly eliminated. The method is further validated under an inverted fluorescence microscope. The experimental results show that the zero-order light can be inhibited up to 91.3%, accompanied by an improvement of the modulation efficiency from 77.5% to 92.6%.

3.
Acta Radiol ; 64(3): 962-970, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35815702

ABSTRACT

BACKGROUND: Calcifications are important abnormal findings in breast imaging and help in the diagnosis of breast cancer. PURPOSE: To compare breast cone-beam computed tomography (CBCT) with digital mammography (DM) in terms of the ability to identify malignant calcifications. MATERIAL AND METHODS: In total, 115 paired examinations were performed utilizing breast CBCT and DM; 86 pathology-proven malignant lesions with calcifications detected on DM and 29 randomly selected breasts without calcifications were reviewed by three radiologists. The ability to detect calcifications was assessed on CBCT images. The characterization agreement of two imaging modalities was evaluated by the kappa coefficient. For breast CBCT images, the parameters for the display of calcifications were recorded. The Kruskal-Wallis test was used to compare the preferred slice thickness chosen by each of the three radiologists. The degree of calcification clarity was compared between two modalities using the Mann-Whitney U-test. RESULTS: The combined sensitivity and specificity of three radiologists in 85 DM-detected calcifications detection on breast CBCT images were 98.43% (251/255) and 98.85% (86/87), respectively. CBCT images showed substantial agreement with mammograms in terms of the characterization of calcifications morphology (k = 0.703; P < 0.05) and distribution (k = 0.629; P < 0.05). CBCT images with a slice thickness of 0.273 mm and three-dimensional maximum-intensity projection (3D-MIP) were more beneficial for calcifications identification. No statistically significant difference was found between standard DM views and CBCT images for three radiologists on calcification display clarity. CONCLUSION: CBCT images were comparable to mammograms in calcification identification and may be sufficient for malignant calcifications detection and characterization.


Subject(s)
Breast Neoplasms , Calcinosis , Humans , Female , Mammography/methods , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Calcinosis/diagnostic imaging , Calcinosis/pathology , Cone-Beam Computed Tomography/methods
4.
Radiol Med ; 128(12): 1472-1482, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857980

ABSTRACT

PURPOSE: Cone-beam breast CT (CBBCT) has an inherent limitation that the axilla cannot be imaged in its entirety. We aimed to develop and validate a nomogram based on clinical factors and contrast-enhanced (CE) CBBCT radiomics features to predict axillary lymph node (ALN) metastasis and complement limited axilla coverage. MATERIAL AND METHODS: This retrospective study included 312 patients with breast cancer from two hospitals who underwent CE-CBBCT examination in a clinical trial (NCT01792999) during 2012-2020. Patients from TCIH comprised training set (n = 176) and validation set (n = 43), and patients from SYSUCC comprised external test set (n = 93). 3D ROIs were delineated manually and radiomics features were extracted by 3D Slicer software. RadScore was calculated and radiomics model was constructed after feature selection. Clinical model was built on independent predictors. Nomogram was developed with independent clinical predictors and RadScore. Diagnostic performance was compared among three models by ROC curve, and decision curve analysis (DCA) was used to evaluate the clinical utility of nomogram. RESULTS: A total of 139 patients were ALN positive and 173 patients were negative. Twelve radiomics features remained after feature selection. Location and focality were selected as independent predictors for ALN status. The AUC of nomogram in external test set was higher than that of clinical model (0.80 vs. 0.66, p = 0.012). DCA demonstrated that the nomogram had higher overall net benefit than that of clinical model. CONCLUSION: The nomogram combined CE-CBBCT-based radiomics features and clinical factors could have potential in distinguishing ALN positive from negative and addressing the limitation of axilla coverage in CBBCT.


Subject(s)
Lymph Nodes , Nomograms , Humans , Retrospective Studies , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Axilla/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Tomography, X-Ray Computed/methods
5.
Anal Chem ; 94(35): 12231-12239, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35999194

ABSTRACT

Micromixer is a key element in a lab on a chip for broad applications in the analysis and measurement of chemistry and engineering. Previous investigations reported that electrokinetic (EK) turbulence could be realized in a "Y" type micromixer with a cross-sectional dimension of 100 µm order. Although the ultrafast turbulent mixing can be generated at a bulk flow Reynolds number on the order of unity, the micromixer has not been optimized. In this investigation, we systematically investigated the influence of electric field intensity, AC frequency, electric conductivity ratio, and channel width at the entrance on the mixing effect and transition electric Rayleigh number in the "Y" type electrokinetic turbulent micromixer. It is found that the optimal mixing is realized in a 350 µm wide micromixer, under 100 kHz and 1.14 × 105 V/m AC electric field, with an electric conductivity ratio of 1:3000. Under these conditions, a degree of mixedness of 0.93 can be achieved at 84 µm from the entrance and 100 ms. A further investigation of the critical electric field and the critical electric Rayleigh number indicates that the most unstable condition of EK flow instability is inconsistent with that of the optimal mixing in EK turbulence. To predict the evolution of EK flow under high Raσ and guide the design of EK turbulent micromixers, it is necessary to apply a computational turbulence model instead of linear instability analysis.

6.
Opt Lett ; 47(6): 1335-1338, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290307

ABSTRACT

In this Letter, we propose a non-iterative multifold strip segmentation phase method for a spatial light modulator (SLM) to generate multifocal spots of diverse beams (Airy, spiral, perfect vortex, and Bessel-Gaussian beams) in a high-numerical-aperture system, with up to 6D controllability. The method is further validated by an inverted fluorescence microscope. By adjusting the bright and dark voltage parameters of the SLM, zero-order light caused by the pixelation effect of the SLM has been successfully eliminated. We hope this research provides a more flexible and powerful approach for the rapid modulation of multi-focus light fields in the development of biomedicine and lithography.

7.
Eur Radiol ; 32(4): 2286-2300, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34476564

ABSTRACT

Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.


Subject(s)
Breast Neoplasms , Calcinosis , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Calcinosis/pathology , Female , Humans , Mammography/methods , Tomography, X-Ray Computed/methods
8.
Eur Radiol ; 32(8): 5773-5782, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35320411

ABSTRACT

OBJECTIVES: To compare the background parenchymal enhancement (BPE) levels on contrast-enhanced cone-beam breast CT (CE-CBBCT) and MRI, evaluate inter-reader reliability, and analyze the relationship between clinical factors and BPE level on CE-CBBCT. METHODS: In this retrospective study, patients who underwent both CE-CBBCT and MRI were analyzed. BPE levels on CE-CBBCT and MRI were assessed by five specialists independently in random fashion, with a wash-out period of 4 weeks. Weighted kappa was used to analyze the agreement between CE-CBBCT and MRI, and intraclass correlation coefficient (ICC) was used to evaluate the inter-reader reliability for each modality. The association between BPE level on CE-CBBCT and clinical factors was evaluated by univariate and multivariate logistic regression. RESULTS: A total of 221 patients from January 2017 to April 2021 were enrolled. CE-CBBCT showed substantial agreement (weighted kappa = 0.690) with MRI for BPE evaluation, with good degree of inter-reader reliability on both CE-CBBCT (ICC = 0.712) and MRI (ICC = 0.757). Based on majority reports, BPE levels on CE-CBBCT were lower than MRI (p < 0.001). BPE level on CE-CBBCT was significantly associated with menstrual status (odds ratio, OR = 0.125), breast density (OR = 2.308), and previously treated breast cancer (OR = 0.052) (all p < 0.05). BPE level for premenopausal patients was associated with menstrual cycle, with lower BPE level for the 2nd week of menstrual cycle (OR = 0.246). CONCLUSIONS: CE-CBBCT showed substantial agreement and comparable inter-reader reliability with MRI for BPE evaluation, indicating that the corresponding BI-RADS lexicons could be used to describe BPE level on CE-CBBCT. The 2nd week of menstrual cycle timing is suggested as the optimal examination period for CE-CBBCT. KEY POINTS: • CE-CBBCT showed substantial agreement and comparable inter-reader reliability with MRI for BPE evaluation. • Menstrual status, breast density, and previously treated breast cancer were associated with the BPE level on CE-CBBCT images. • The 2ndweek of the menstrual cycle is suggested as the optimal examination period for CE-CBBCT.


Subject(s)
Breast Neoplasms , Mammography , Breast Neoplasms/diagnostic imaging , Cone-Beam Computed Tomography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Mammography/methods , Reproducibility of Results , Retrospective Studies
9.
Eur Radiol ; 32(3): 1579-1589, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34342694

ABSTRACT

Dedicated breast CT is an emerging 3D isotropic imaging technology for breast, which overcomes the limitations of 2D compression mammography and limited angle tomosynthesis while providing some of the advantages of magnetic resonance imaging. This first installment in a 2-part review describes the evolution of dedicated breast CT beginning with a historical perspective and progressing to the present day. Moreover, it provides an overview of state-of-the-art technology. Particular emphasis is placed on technical limitations in scan protocol, radiation dose, breast coverage, patient comfort, and image artifact. Proposed methods of how to address these technical challenges are also discussed. KEY POINTS: • Advantages of breast CT include no tissue overlap, improved patient comfort, rapid acquisition, and concurrent assessment of microcalcifications and contrast enhancement. • Current clinical and prototype dedicated breast CT systems differ in acquisition modes, imaging techniques, and detector types. • There are still details to be decided regarding breast CT techniques, such as scan protocol, radiation dose, breast coverage, patient comfort, and image artifact.


Subject(s)
Calcinosis , Tomography, X-Ray Computed , Breast/diagnostic imaging , Humans , Imaging, Three-Dimensional , Mammography , Phantoms, Imaging
10.
Opt Express ; 29(6): 8698-8709, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820312

ABSTRACT

In this investigation, we propose a strip segmentation phase (SSP) method for a spatial light modulator (SLM) to generate independent multifocal spots when the beam passes through a high numerical aperture (NA) lens. With the SSP method, multifocal spots can be generated with each spot independently, flexibly and uniformly distributed. The performance of the SSP method is first validated with numerical simulation. Then, by applying the modulation method with SLM and importing the beams into an inverted fluorescence microscopy system with a high-NA lens, the spot distribution and their shapes can be observed by fluorescent image. The fluorescent image exhibits high uniformity and high consistency with the aforementioned numerical simulations. Finally, we dynamically load a series of phase maps on SLM to realize continuous and independent spot movement in a multifocal array. By laser direct writing on photoresist, a complex NWU-shape structure can be realized flexibly with multi-task fabrication capability. The SSP method can significantly improve the efficiency and flexibility of laser direct writing. It is also compatible with most recent techniques, e.g., multiphoton absorption, stimulated emission depletion and photo-induced depolymerization etc., to realize parallel super-resolution imaging and fabrications.

11.
J Microsc ; 282(3): 239-249, 2021 06.
Article in English | MEDLINE | ID: mdl-33443815

ABSTRACT

The interface of mediums with refractive indices discontinuous, for example air-glass and glass-water, are inevitable in microscopic imaging. In this work, the aberration of oblique interface with refractive index discontinuous on the laser scanning microscope was investigated theoretically with numerical simulations. It was found that the position, shape and FWHM of focal spots, were all significantly affected by the aberration due to oblique interface. The aberration can cause serious shifting of focal spots in the axial direction of beam during z -scanning and lead to an inaccurate reconstruction of three-dimensional (3D) targets. The aberration can also lead to a decreasing spatial resolution. To correct the influence of the aberration, a pure-phase modulation method has been proposed. By applying a phase compensation map into a spatial light modulator (SLM), the oblique interface aberration had been corrected experimentally in a laser scanning microscope. We hope this research can attract the attention of researchers when using scanning microscope, especially for reconstructing 3D biological and material structures.


Subject(s)
Refractometry , Microscopy, Confocal
12.
Eur Radiol ; 31(4): 2580-2589, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33009590

ABSTRACT

OBJECTIVES: To investigate the association of contrast-enhanced cone beam breast CT (CE-CBBCT) features, immunohistochemical (IHC) receptors, and molecular subtypes in breast cancer. METHODS: In this retrospective study, patients who underwent preoperative CE-CBBCT and received complete IHC results were analyzed. CE-CBBCT features were evaluated by two radiologists. Observer reproducibility and feature reliability were assessed. The association between CE-CBBCT features, IHC receptors, and molecular subtypes was analyzed using the chi-square, Mann-Whitney, and Kruskal-Wallis tests. Multivariate logistic regression was performed to assess the ability of combined imaging features to discriminate molecular subtypes. ROC curve was used to evaluate prediction performance. RESULTS: A total of 240 invasive cancers identified in 211 women were enrolled. Molecular subtypes of breast cancer were significantly associated with focality number of lesions, lesion type, tumor size, lesion density, internal enhancement pattern, degree of lesion enhancement (ΔHU), mass shape, spiculation, calcifications, calcification distribution, and increased peripheral vascularity of lesion (all p < 0.005), some of which also helped to differentiate IHC receptor status. A multivariate logistic regression model showed that tumor size (odds ratio, OR = 1.244), mass shape (OR = 0.311), spiculation (OR = 0.159), and internal enhancement pattern (OR = 0.227) were associated with differentiation between luminal and non-luminal subtypes (AUC = 0.809). Combined CE-CBBCT features, including lesion type (OR = 0.118), calcifications (OR = 0.181), and ΔHU (OR = 0.962), could be significant indicators of triple-negative versus HER-2-enriched subtypes (AUC = 0.913). CONCLUSIONS: CE-CBBCT features have the potential to help predict IHC receptor status and distinguish molecular subtypes of breast cancer, which could in turn help to develop individual treatment decisions and prognosis predictions. KEY POINTS: • A total of 11 CE-CBBCT features were associated with molecular subtypes, some of which also helped to differentiate IHC receptor status. • Tumor size, irregular mass shape, spiculation, and internal enhancement pattern could help identify luminal subtype. • Lesion type, calcification, and ΔHU could be significant indicators of HER-2- enriched versus triple-negative breast cancers.


Subject(s)
Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Cone-Beam Computed Tomography , Female , Humans , Mammography , Receptor, ErbB-2 , Reproducibility of Results , Retrospective Studies
13.
Eur Radiol ; 30(6): 3594-3595, 2020 06.
Article in English | MEDLINE | ID: mdl-32065280

ABSTRACT

The original version of this article, published on 03 January 2020, unfortunately contained two mistakes.

14.
Eur Radiol ; 30(5): 2731-2739, 2020 May.
Article in English | MEDLINE | ID: mdl-31900700

ABSTRACT

OBJECTIVES: To identify the relationship between human epidermal growth factor receptor 2 (HER2) status and cone-beam breast CT (CBBCT) characteristics in surgically resected breast cancer. METHODS: Preoperative CBBCT of patients with BI-RADS 4 or 5 lesions identified on mammography or ultrasound and dense or very dense breast tissue were retrospectively evaluated in 181 surgically resected breast cancer (triple-negative excluded) between May 2012 and November 2014. A set of CBBCT descriptors was semiquantitatively assessed by consensus double reading. Reader reproducibility was analyzed. Multivariable logistic regression analysis using backward elimination (BEA) with the Wald criterion was performed to identify independent predictive factors of harboring HER2/neu. Principle component analysis (PCA) was used to determine characteristics that might differentiate HER2 status. Receiver operating characteristic (ROC) curve analyses were conducted to determine the predictive capability. RESULTS: HER2 positive was found in 101 (55.8%) of 181 patients. Inter-observer agreement was high for characteristics' assessment. Based on BEA, pathologic grade, maximum dimension, lobulation, ΔCT, and calcification morphology were confirmed as independent predictive factors of HER2/neu overexpression. PCA showed that calcification- and border-related characteristics were the most important for differentiation. ROC curve analyses showed that CBBCT features (AUC = 0.853) were superior to clinicopathologic features (AUC = 0.613, p < 0.001) and comparable with combination (AUC = 0.856, p = 0.866). CONCLUSIONS: CBBCT features could be used to prognosticate HER2 status independently, which are potentially complementary to histopathologic result and helpful in guiding biopsy. KEY POINTS: • Dmax, lobulation, ΔCT, and calcification morphology are independent predictors of HER2 status. • CBBCT features are superior to clinicopathologic features in HER2+/- discrimination. • CBBCT features are comparable with combination with clinicopathologic features in HER2+/- discrimination.


Subject(s)
Breast Neoplasms/diagnosis , Cone-Beam Computed Tomography/methods , Mammography/methods , Receptor, ErbB-2/biosynthesis , Adult , Aged , Biomarkers, Tumor/biosynthesis , Biopsy , Breast Density , Breast Neoplasms/metabolism , Female , Humans , Middle Aged , ROC Curve , Reproducibility of Results , Retrospective Studies
17.
Adv Mater ; 35(47): e2309667, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37807931

ABSTRACT

T cells play a basic and key role in immunotherapy against solid tumors, and efficiently recruiting them into neoplastic foci and sustaining long-term effector function are consistent goals that remain a critical challenge. Here, an injectable alginate-based hydrogel with abundant ß-cyclodextrin (ALG-ßCD) sites is developed and intratumorally injected to recruit CCR9+ CD8+ T cells (a subset of T cells with robust antitumor activity) via the trapped chemokine CCL25. In the meantime, an intravenously injected adamantane-decorated anti-PD1 antibody (Ad-aPD1) would hitchhike on recruited CCR9+ CD8+ T cells to achieve the improved intratumoral accumulation of Ad-aPD1. Moreover, the Ad-PD1 and Ad-PDL1 antibodies are immobilized in the ALG-ßCD hydrogel through supramolecular host-guest interactions of Ad and ßCD, which facilitate engagement between CD8+ T cells and tumor cells and reinvigorate CD8+ T cells to avoid exhaustion. Based on this treatment strategy, T cell-mediated anticancer activity is promoted at multiple levels, eventually achieving superior antitumor efficacy in both orthotopic and postsurgical B16-F10 tumor models.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Hydrogels/metabolism , Immunotherapy , Neoplasms/therapy , Neoplasms/metabolism
18.
Adv Sci (Weinh) ; 10(7): e2204793, 2023 03.
Article in English | MEDLINE | ID: mdl-36698293

ABSTRACT

The passive diffusion performance of nanocarriers results in inefficient drug transport across multiple biological barriers and consequently cancer therapy failure. Here, a magnetically driven amoeba-like nanorobot (amNR) is presented for whole-process active drug transport. The amNR is actively extravasated from blood vessels and penetrated into deep tumor tissue through a magnetically driven deformation effect. Moreover, the acidic microenvironment of deep tumor tissue uncovers the masked targeting ligand of amNR to achieve active tumor cell uptake. Furthermore, the amNR rapidly releases the encapsulated doxorubicin (DOX) after alternating magnetic field application. The amNRs eventually deliver DOX into ≈92.3% of tumor cells and completely delay tumor growth with an inhibition rate of 96.1%. The deformable amNRs, with the assistance of magnetic field application, provide a facile strategy for whole-process active drug transport.


Subject(s)
Amoeba , Biological Transport , Doxorubicin , Magnetic Fields
19.
Micromachines (Basel) ; 14(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37421057

ABSTRACT

Multi-focal laser direct writing (LDW) based on phase-only spatial light modulation (SLM) can realize flexible and parallel nanofabrication with high-throughput potential. In this investigation, a novel approach of combining two-photon absorption, SLM, and vector path-guided by scalable vector graphics (SVGs), termed SVG-guided SLM LDW, was developed and preliminarily tested for fast, flexible, and parallel nanofabrication. Three laser focuses were independently controlled with different paths, which were optimized according to the SVG to improve fabrication and promote time efficiency. The minimum structure width could be as low as 81 nm. Accompanied by a translation stage, a carp structure of 18.10 µm × 24.56 µm was fabricated. This method shows the possibility of developing LDW techniques toward fully electrical systems, and provides a potential way to efficiently engrave complex structures on nanoscales.

20.
Acad Radiol ; 30(9): 1805-1815, 2023 09.
Article in English | MEDLINE | ID: mdl-36610931

ABSTRACT

RATIONALE AND OBJECTIVES: To compare the accuracy of preoperative contrast-enhanced cone beam breast CT (CE-CBBCT) and MRI in assessment of residual tumor after neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: Residual tumor assessments in 91 female patients were performed on preoperative CE-CBBCT and MRI images after NAC. The agreements of tumor size between imaging and pathology were tested by Intraclass Correlation Coefficient (ICC). Subgroup analyses were set according to ductal carcinoma in situ (DCIS), calcifications and molecular subtypes. Correlated-samples Wilcoxon Signed-rank test was used to analyze the difference between imaging and pathology in total and subgroups. AUC, sensitivity, specificity, PPV, and NPV were calculated to compare the performance of CE-CBBCT and MRI in predicting pathological complete response (pCR). RESULTS: Comparing with pathology, the agreement on CE-CBBCT was good (ICC = 0.64, 95% CI, 0.35-0.78), whereas on MRI was moderate (ICC = 0.59, 95% CI, 0.36-0.77), and overestimation on CE-CBBCT was less than that on MRI (median (interquartile range, IQR): 0.24 [0.00, 1.31] cm vs. 0.67 [0.00, 1.81] cm; p = 0.000). In subgroup analysis, CE-CBBCT showed superior accuracy than MRI when residual DCIS (p = 0.000) and calcifications (p = 0.000) contained, as well as luminal A (p = 0.043) and luminal B (p = 0.009) breast cancer. CE-CBBCT and MRI performed comparable in predicting pCR, AUCs were 0.749 and 0.733 respectively (p > 0.05). CONCLUSION: CE-CBBCT showed superior accuracy in assessment of residual tumor compared with MRI, especially when residual DCIS or calcifications contained and luminal subtype. The performance of preoperative CE-CBBCT in predicting pCR was comparable to MRI. CE-CBBCT could be an alternative method used for preoperative assessment after NAC.


Subject(s)
Breast Neoplasms , Calcinosis , Carcinoma, Intraductal, Noninfiltrating , Female , Humans , Neoadjuvant Therapy/methods , Carcinoma, Intraductal, Noninfiltrating/pathology , Neoplasm, Residual/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/surgery , Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL