Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Microencapsul ; 40(3): 125-156, 2023 May.
Article in English | MEDLINE | ID: mdl-36749629

ABSTRACT

Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.


Subject(s)
Nanocapsules , Polymers , Polyethylene Glycols
2.
Electrophoresis ; 43(7-8): 819-838, 2022 04.
Article in English | MEDLINE | ID: mdl-34758117

ABSTRACT

A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics, for instance, compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in the production of nanoparticles in microfluidic environment having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for the production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, and healthcare including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications.


Subject(s)
Microfluidics , Nanoparticles , Drug Delivery Systems , Lab-On-A-Chip Devices , Microfluidics/methods , Nanoparticles/chemistry , Polymers/chemistry
3.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35056806

ABSTRACT

The massive and careless use of glyphosate (GLY) in agricultural production raises many questions regarding environmental pollution and health risks, it is then important to develop simple methods to detect it. Electrochemical impedance spectroscopy (EIS) is an effective analytical tool for characterizing properties at the electrode/electrolyte interface. It is useful as an analytical procedure, but it can also help in the interpretation of the involved fundamental electrochemical and electronic processes. In this study, the impedance data obtained experimentally for a microsensor based on molecularly imprinted chitosan graft on 4-aminophenylacetic acid for the detection of glyphosate was analyzed using an exact mathematical model based on physical theories. The procedure for modeling experimental responses is well explained. The analysis of the observed impedance response leads to estimations of the microscopic parameters linked to the faradic and capacitive current. The interaction of glyphosate molecules with the imprinted sites of the CS-MIPs film is observed in the high frequency range. The relative variation of the charge transfer resistance is proportional to the log of the concentration of glyphosate. The capacitance decreases as the concentration of glyphosate increases, which is explained by the discharging of the charged imprinted sites when the glyphosate molecule interacts with the imprinted sites through electrostatic interactions. The phenomenon of adsorption of the ions in the CMA film is observed in the low frequency range, this phenomenon being balanced by the electrostatic interaction of glyphosate with the imprinted sites in the CS-MIPs film.

4.
Sensors (Basel) ; 21(8)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919562

ABSTRACT

Melamine has been used as a non-protein nitrogenous additive in food products to artificially increase the apparent "false" protein content. Melamine is known as a dangerous and poisonous substance for human health and it causes diverse diseases. An electrochemical sensor for melamine detection has been developed by modification of a glassy carbon electrode using copolymer poly[DMAEMA-co-styrene], gold nanoparticles, and methylene blue. The characterization of the modified electrode was conducted using several analysis techniques including cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The electrochemical detection of melamine was performed by impedance spectroscopy. Obtained results revealed that the developed sensor has a large detection range from 5.0 × 10-13 to 3.8 × 10-8 M with a low detection limit of 1.8 × 10-12 M (at S/N = 3). Various interfering species such as phenol, hydroquinone, and bisphenol A have been used and their behavior on modified electrode has been studied.


Subject(s)
Gold , Metal Nanoparticles , Carbon , Electrochemical Techniques , Electrodes , Humans , Limit of Detection , Methacrylates , Methylene Blue , Styrene , Triazines
5.
Electrophoresis ; 41(13-14): 1206-1224, 2020 07.
Article in English | MEDLINE | ID: mdl-32347555

ABSTRACT

Superparamagnetic nanoparticles are attracting significant attention. Therefore, being explored in microsystems for a wide range of applications. Typical examples include lab-on-a-chip and microfluidics for synthesis, detection, separation, and transportation of different bioanalytes, such as biomolecules, cells, and viruses to develop portable, sensitive, and cost-effective biosensing systems. Particularly, microfluidic systems incorporated with magnetic nanoparticles and, in combination with magnetoresistive sensors, shift diagnostic and analytical methods to a microscale level. In this context, nanotechnology enables the miniaturization and integration of a variety of analytical functions in a single chip for manipulation, detection, and recognition of bioanalytes reliably and flexibly. In consideration of the above, recent development and benefits are elaborated herein to discuss the role of magnetic nanoparticles inside the microchannels to design highly efficient disposable point-of-care applications from transportation to the detection of bioanalytes.


Subject(s)
Biosensing Techniques , Magnetite Nanoparticles , Microfluidic Analytical Techniques , Lab-On-A-Chip Devices , Nanotechnology , Point-of-Care Systems
6.
Sensors (Basel) ; 20(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917045

ABSTRACT

The extensive use of chromium by several industries conducts to the discharge of an immense quantity of its various forms in the environment which affects drastically the ecological and biological lives especially in the case of hexavalent chromium. Electrochemical sensors and biosensors are useful devices for chromium determination. In the last five years, several sensors based on the modification of electrode surface by different nanomaterials (fluorine tin oxide, titanium dioxide, carbon nanomaterials, metallic nanoparticles and nanocomposite) and biosensors with different biorecognition elements (microbial fuel cell, bacteria, enzyme, DNA) were employed for chromium monitoring. Herein, recent advances related to the use of electrochemical approaches for measurement of trivalent and hexavalent chromium from 2015 to 2020 are reported. A discussion of both chromium species detections and speciation studies is provided.

7.
Molecules ; 25(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878151

ABSTRACT

Magnetic nanoparticles (MNPs) were synthesized using the colloidal co-precipitation method and further coated with silica using the Stöber process. These were functionalized with carboxylic and amine functionalities for further covalent immobilization of antibodies on these MNPs. The procedure for covalent immobilization of antibodies on MNPs was developed using 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The evaluation of the efficiency of the coupling reaction was carried out by UV-vis spectrophotometry. The developed antibodies coupled to MNPs were tested for the pre-concentration of two biomarkers tumor necrosis factor alpha (TNF-α) and Interleukin-10 (IL-10). Both biomarkers were assessed in the matrix based on phosphate-buffered saline solution (PBS) and artificial saliva (AS) to carry out the demonstration of the format assay. Supernatants were used to determine the number of free biomarkers for both studies. Reduction of the nonspecific saliva protein adsorption on the surface of the complex antibodies-MNPs to levels low enough to allow the detection of biomarkers in complex media has been achieved.


Subject(s)
Biomarkers , Biosensing Techniques , Magnetite Nanoparticles/chemistry , Saliva, Artificial/analysis , Humans , Magnetite Nanoparticles/ultrastructure , Models, Theoretical , Molecular Structure , Particle Size
8.
Sensors (Basel) ; 19(10)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126047

ABSTRACT

Breast Cancer is one of the world's most notorious diseases affecting two million women in 2018 worldwide. It is a highly heterogeneous disease, making it difficult to treat. However, its linear progression makes it a candidate for early screening programs, and the earlier its detection the higher the chance of recovery. However, one key hurdle for breast cancer screening is the fact that most screening techniques are expensive, time-consuming, and cumbersome, making them impractical for use in several parts of the world. One current trend in breast cancer detection has pointed to a possible solution, the use of salivary breast cancer biomarkers. Saliva is an attractive medium for diagnosis because it is readily available in large quantities, easy to obtain at low cost, and contains all the biomarkers present in blood, albeit in lower quantities. Affinity sensors are devices that detect molecules through their interactions with biological recognition molecules. Their low cost, high sensitivity, and selectivity, as well as rapid detection time make them an attractive alternative to traditional means of detection. In this review article, we discuss the current status of breast cancer diagnosis, its salivary biomarkers, as well as the current trends in the development of affinity sensors for their detection.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Saliva/metabolism , Autoantibodies/metabolism , Biomarkers, Tumor/analysis , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Female , Humans , Mammography , Metabolomics , MicroRNAs/metabolism , Mucins/metabolism , Saliva/chemistry
9.
Sensors (Basel) ; 19(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744018

ABSTRACT

Tumor necrosis factor-α (TNF-α) is a biomarker of inflammation that occurs in patients suffering from heart failure (HF). Saliva can be sampled in a non-invasive way, and it is currently gaining importance as matrix alternative to blood in diagnostic and therapy monitoring. This work presents the development of an immunosensor array based on eight screen-printed gold electrodes to detect TNF-α in saliva samples. Two different functionalization strategies of electrodes were compared. In the first, anti-TNF-α antibodies were chemically bonded onto the electrode by functionalization with 4-carboxymethylaniline. The other functionalization procedure involved the binding of antibodies onto polymer-coated magnetic microparticles, which were then deposited onto the electrode by pulsed chronoamperometry. Finally, the chronoamperometry technique was applied to characterize the modified SPEAu. The use of a secondary antibody anti-TNF-α (Ab-TNF-α-HRP) labelled with horseradish peroxidase (HRP, 2 µg·mL-1) was investigated using tetramethylbenzidine (TMB, pH = 3.75) as electrochemical substrate containing 0.2 mM of H2O2. A sandwich-type detection strategy with a secondary antibody anti-TNF-α provided chronoamperometric analyses in 10 s for each sample. Linearity, precision, limit of detection, and selectivity of devices were investigated. Interferences were evaluated by analyzing solutions containing other cytokine produced during the acute stage of inflammation. The immunosensor showed good performance within the clinically relevant concentration range, with a precision of 8%, and a limit of detection of 0.3 pg/mL. Therefore, it may represent a promising tool for monitoring HF in a non-invasive way.


Subject(s)
Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Saliva, Artificial/chemistry , Saliva/chemistry , Tumor Necrosis Factor-alpha/analysis , Antibodies, Immobilized/chemistry , Biosensing Techniques/methods , Electrodes , Ferrous Compounds , Humans , Immunoassay/methods , Limit of Detection , Linear Models , Microspheres , Polymers/chemistry , Reproducibility of Results
10.
Micromachines (Basel) ; 15(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38542544

ABSTRACT

We propose a new strategy using a sandwich approach for the detection of two HF biomarkers: tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). For this purpose, magnetic nanoparticles (MNPs) (MNPs@aminodextran) were biofunctionalized with monoclonal antibodies (mAbs) using bis (sulfosuccinimidyl) suberate (BS3) as a cross-linker for the pre-concentration of two biomarkers (TNF-α and IL-10). In addition, our ISFETs were biofunctionalized with polyclonal antibodies (pAbs) (TNF-α and IL-10). The biorecognition between pAbs immobilized on the ISFET and the pre-concentrate antigen (Ag) on MNPs was monitored using electrochemical impedance spectroscopy (EIS). Our developed ImmunoFET showed a low detection limit (0.03 pg/mL) toward our target analyte when compared to previously published electrochemical immunosensors. It showed a higher sensitivity than for other HF biomarkers. Finally, the standard addition method was used to determine the unknown concentration in artificial saliva. The results matched with the expected values well.

11.
Expert Opin Drug Deliv ; 20(2): 189-204, 2023 02.
Article in English | MEDLINE | ID: mdl-36608938

ABSTRACT

INTRODUCTION: Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years. AREA COVERED: Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed. EXPERT OPINION: MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Neoplasms , Humans , Magnetite Nanoparticles/therapeutic use , Magnetite Nanoparticles/chemistry , Neoplasms/drug therapy , Magnetics , Combined Modality Therapy
12.
Int J Pharm ; 632: 122570, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36587775

ABSTRACT

Nanotechnology has ultimately come into the domain of drug delivery. Nanosystems for delivery of drugs are promptly emerging science utilizing different nanoparticles as carriers. Biocompatible and stable nanocarriers are novel diagnosis tools or therapy agents for explicitly targeting locates with controllable way. Nanocarriers propose numerous advantages to treat diseases via site-specific as well as targeted delivery of particular therapeutics. In recent times, there are number of outstanding nanocarriers use to deliver bio-, chemo-, or immuno- therapeutic agents to obtain effectual therapeutic reactions and to minimalize unwanted adverse-effects. Nanoparticles possess remarkable potential for active drug delivery. Moreover, conjugation of drugs with nanocarriers protects drugs from metabolic or chemical modifications, through their way to targeted cells and hence increased their bioavailability. In this review, various systems integrated with different types of nanocarriers (inorganic. organic, quantum dots, and carbon nanotubes) having different compositions, physical and chemical properties have been discussed for drug delivery applications.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Nanotechnology , Pharmaceutical Preparations , Drug Carriers/chemistry
13.
Biosens Bioelectron ; 222: 114954, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36502717

ABSTRACT

Monitoring Interleukin 10 (IL-10) is essential for understanding the vast responses of T-cells in cancer, autoimmunity, and internal homeostasis after physical stress. However, current diagnostic methods are complex and more focused on medical screening rather than point-of-care monitoring. Biosensors based on graphene's conductivity and flexibility are attractive to offer simple single-use and reduced handling. However, oxidation of its carbon lattice to develop functional moieties for biomolecule immobilization cuts down its electronic conductivity potential. In this work, the authors present a microfluidic lab-on-chip device for simple impedimetric monitoring of IL-10 based on graphene foam (GF) flexible electrodes. Graphene's structure was maintained by employing π-π non-covalent functionalization with pyrene carboxylic acid (PCA). Impedimetric measurements could be performed in low ionic strength phosphate-buffered saline (LI-PBS). The PCA-antibody modification showed to endure the incubation, measurement, and washing processes performed in the microfluidic device. Electrode modification and measurements were characterized by, electrochemical impedance spectroscopy (EIS), contact angle, and scanning electron microscopy. From the contact angle results, we found that the wettability of the graphene surface increased gradually after each modification step. Detection measurements performed in the 3D-printed microfluidic device showed a linear response between 10 fg/mL to 100 fg/mL with a limit of detection (LOD) of 7.89 fg/mL in artificial saliva. With these features, the device was used to quantify IL-10 samples by the standard addition method for 10 fg and 50 fg with recoveries between 82% and 99%. Specificity was evaluated towards interleukin 6, TNF-⍺ and bovine serum albumin.


Subject(s)
Biosensing Techniques , Graphite , Graphite/chemistry , Interleukin-10 , Biosensing Techniques/methods , Electrochemical Techniques/methods , Oxidation-Reduction , Electrodes , Limit of Detection
14.
Talanta ; 256: 124280, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36696735

ABSTRACT

Currently, sensitive and accurate approaches for diagnosis, rapid assessment, and cardiac biomarker monitoring in patients with heart failure are needed. In this context, the advantages of aptamers over traditional antibodies have been employed to fabricate a single-step impedimetric N-terminal pro b-type natriuretic peptide (NT-proBNP)-modified gold microelectrode array. The development of an electrochemical aptasensing platform was based on the coimmobilization of alkanethiol self-assembled monolayers and amine-terminated aptamer that specifically recognized cardiac NT-proBNP protein resulting in charge electron transfer. Electroimpedimetric signals of the sensor were observed to be linear to the NT-proBNP concentrations in the range of 5.0 × 10-3 to 1.0 pg mL-1 (R2 = 0.9624), while achieving a low detection limit of 5.0 × 10-3 pg mL-1. Clinically relevant detection levels for NT-proBNP were achieved in a simple, rapid, and label-free measurement using artificial saliva, which was highlighted to be specific, regenerative, and selective over potential interferers occurring during the processes of cardiac insufficiency, Therefore, the novel NT-proBNP aptasensor is a promising point-of-care tool exhibiting safe, non-invasive, affordable, and non-prescription home use accessible to overcome the limitations associated with conventional ELISA and previous aptasensing.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Humans , Saliva, Artificial , Heart Failure/diagnosis , Peptide Fragments , Biomarkers
15.
Nanomaterials (Basel) ; 13(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37242104

ABSTRACT

Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.

16.
Talanta ; 251: 123759, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35952499

ABSTRACT

Heart failure (HF) is a chronic cardiovascular disease that represents main cause of mortality worldwide, particularly for elderly. N-terminal pro-brain natriuretic peptide (NT-proBNP) was identified as the gold standard biomarker for HF diagnosis and therapy monitoring. Presently, saliva analysis represents an emerging and powerful tool for clinical applications and electrochemical immunosensors have shown their potential in Healthcare applications as selective and reliable systems for detecting clinical biomarkers. This work presents the detection of NT-proBNP in saliva samples by an immunologically modified Field effect Transistor (IMFET). TESUD ((11-triethoxysilyl) undecanal) was used as cross-linker to immobilise anti-NT-proBNP antibody onto the device. Our IMFET that was then tested in different matrices (e.g. phosphate buffered saline (PBS), artificial saliva and human saliva) using electrochemical impedance spectroscopy (EIS), and it resulted selective to NT-proBNP with good sensitivity (detection limit of 0.02 pg/mL) and a wide linear range (0.02-1 pg/mL and 0.5-20 pg/mL). Finally, NT-proBNP concentration in ten saliva samples was determined by performing the standard addition method. An enzyme-linked immunosorbent assay was used for confirming IMFET results, highlighting both IMFET accuracy (analyte recovery of 99 ± 8%) and precision (coefficient of variation always <10%), and supporting the suitability of the device for determining salivary NT-proBNP.


Subject(s)
Biosensing Techniques , Heart Failure , Aged , Humans , Biomarkers , Heart Failure/diagnosis , Immunoassay , Natriuretic Peptide, Brain , Peptide Fragments , Phosphates , Saliva , Saliva, Artificial , Stroke Volume , Electrochemical Techniques
17.
Talanta ; 257: 123802, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36863297

ABSTRACT

Cortisol, a steroid hormone mostly known as "the stress hormone," plays many essential functions in humans due its involvement in several metabolic pathways. It is well-known that cortisol dysregulation is implied in evolution and progression of several chronic pathologies, including cardiac diseases such as heart failure (HF). However, although several sensors have been proposed to date for the determination of cortisol, none of them has been designed for its determination in saliva in order to monitor HF progression. In this work, a silicon nitride based Immuno field-effect transistor (ImmunoFET) has been proposed to quantify salivary cortisol for HF monitoring. Sensitive biological element was represented by anti-cortisol antibody bound onto the ISFET gate via 11-triethoxysilyl undecanal (TESUD) by vapor-phase method. Potentiometric and electrochemical impedance spectroscopy (EIS) measurements were carried out for preliminary investigations on device responsiveness. Subsequently, a more sensitive detection was obtained using electrochemical EIS. The proposed device has proven to have a linear response (R2 always >0.99), to be sensitive (with a limit of detection, LoD, of 0.005 ± 0.002 ng/mL), selective in case of other HF biomarkers (e.g. N-terminal pro B-type natriuretic peptide (NT-proBNP), tumor necrosis factor-alpha (TNF-α), and interleukin 10 (IL-10)), and accurate in cortisol quantification in saliva sample by performing the standard addition method.


Subject(s)
Heart Failure , Hydrocortisone , Humans , Dielectric Spectroscopy , Heart Failure/diagnosis , Biomarkers , Saliva , Peptide Fragments
18.
Biosens Bioelectron ; 242: 115612, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37804572

ABSTRACT

Food allergies trigger a variety of clinical adverse symptoms and clinical evidence suggests that the presence of food allergy-related IgG can be helpful in the diagnosis when analyzed at the peptide-epitope level. To validate and select the peptides based on their specificity toward hazelnut or peanut epitopes, the authors of this study developed a silicon-based microchip coupled with click-chemistry bound peptides identified by the Fraunhofer Institute for Cell Therapy and Immunology. Peptides related to hazelnut and peanut allergies were identified and used to develop a silicon-based microchip. Peptides were coupled with click-chemistry to the sensor surface. The immunosensor was developed by electrografting diazotized amino phenylacetic acid and subsequently, dibenzocyclooctyne-amine (DBCO-NH2) was used as click-chemistry to allow coupling of the peptides with a C-terminal linker and azide structure. Energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy (EIS), and fluorescence microscopy techniques have been used to analyze the bio-functionalization of the developed electrode. The peptide-epitope recognition was studied for seven allergen-derived peptides. The electrochemical responses were studied with sera from rabbits immunized with hazelnut and peanut powder. The microchips functionalized with the chosen peptides (peanut peptides T12 and EO13 and hazelnut peptides S4 and EO14 with an RSD of 4%, 3%, 9%, and 1% respectively) demonstrated their ability to specifically detect prevalent anti-nut related IgGs in rabbit sera in a range of dilutions from 1:500000 (0.0002%) until 1:50000 (0.002%). In addition, the other peptides showed promising differentiation abilities which can be further studied to perform multivariable detection fingerprint of anti-allergens in blood sera.


Subject(s)
Biosensing Techniques , Corylus , Food Hypersensitivity , Rabbits , Animals , Allergens/chemistry , Arachis , Corylus/adverse effects , Silicon , Immunoassay , Epitopes , Peptides
19.
Small ; 8(13): 2106-15, 2012 Jul 09.
Article in English | MEDLINE | ID: mdl-22511467

ABSTRACT

The identification and measurement of biomarkers is critical to a broad range of methods that diagnose and monitor many diseases. Serum auto-antibodies are rapidly becoming interesting targets because of their biological and medical relevance. This paper describes a highly sensitive, label-free approach for the detection of p53-antibodies, a prognostic indicator in ovarian cancer as well as a biomarker in the early stages of other cancers. This approach uses impedance measurements on gold microelectrodes to measure antibody concentrations at the picomolar level in undiluted serum samples. The biosensor shows high selectivity as a result of the optimization of the epitopes responsible for the detection of p53-antibodies and was validated by several techniques including microcontact printing, self-assembled-monolayer desorption ionization (SAMDI) mass spectrometry, and adhesion pull-off force by atomic force microscopy (AFM). This transduction method will lead to fast and accurate diagnostic tools for the early detection of cancer and other diseases.


Subject(s)
Antibodies/analysis , Biosensing Techniques/methods , Electric Impedance , Tumor Suppressor Protein p53/immunology , Antibodies/immunology , Female , Humans , Microscopy, Atomic Force
20.
Sci Rep ; 12(1): 10906, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764674

ABSTRACT

Stimuli-responsive controlled delivery systems are of interest for preventing premature leakages and ensuring precise releases of active compounds at target sites. In this study, porous biodegradable micro/nanoparticles embedded with thermoresponsive gatekeepers are designed and developed based on Eudragit RS100 (PNIPAM@RS100) and poly(N-isopropylacrylamide) via a double emulsion solvent evaporation technique. The effect of initiator types on the polymerization of NIPAM monomer/methylene-bis-acrylamide (MBA) crosslinker was investigated at 60 °C for thermal initiators and ambient temperature for redox initiators. The crosslinked PNIPAM plays a key role as thermal-triggered gatekeepers with high loading efficiency and precise release of a model active compound, Nile Blue A (NB). Below the volume phase transition temperature (TVPT), the gatekeepers possess a swollen conformation to block the pores and store NB within the cavities. Above its TVPT, the chains rearrange, allowing gate opening and a rapid and constant release rate of the compound until completion. A precise "on-off" switchable release efficiency of PNIPAM@RS100 was demonstrated by changing the temperatures to 4 and 40 °C. The materials are a promising candidate for controlled drug delivery systems with a precise and easy triggering mechanism at the body temperature for effective treatments.


Subject(s)
Body Temperature , Nanoparticles , Drug Delivery Systems , Porosity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL