Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Molecules ; 29(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611720

ABSTRACT

Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain.


Subject(s)
Escherichia coli Proteins , Tacrolimus Binding Protein 1A , Humans , Escherichia coli/genetics , Molecular Chaperones , Peptidylprolyl Isomerase/genetics , Catalysis
2.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047761

ABSTRACT

Thermophilic proteins and enzymes are attractive for use in industrial applications due to their resistance against heat and denaturants. Here, we report on a thermophilic protein that is stable at high temperatures (Ttrs, hot 67 °C) but undergoes significant unfolding at room temperature due to cold denaturation. Little is known about the cold denaturation of thermophilic proteins, although it can significantly limit their applications. We investigated the cold denaturation of thermophilic multidomain protein translation initiation factor 2 (IF2) from Thermus thermophilus. IF2 is a GTPase that binds to ribosomal subunits and initiator fMet-tRNAfMet during the initiation of protein biosynthesis. In the presence of 9 M urea, measurements in the far-UV region by circular dichroism were used to capture details about the secondary structure of full-length IF2 protein and its domains during cold and hot denaturation. Cold denaturation can be suppressed by salt, depending on the type, due to the decreased heat capacity. Thermodynamic analysis and mathematical modeling of the denaturation process showed that salts reduce the cooperativity of denaturation of the IF2 domains, which might be associated with the high frustration between domains. This characteristic of high interdomain frustration may be the key to satisfying numerous diverse contacts with ribosomal subunits, translation factors, and tRNA.


Subject(s)
Cold Temperature , Prokaryotic Initiation Factor-2 , Prokaryotic Initiation Factor-2/chemistry , Protein Biosynthesis , Thermodynamics , Hot Temperature , Sodium Chloride , Sodium Chloride, Dietary , Protein Denaturation
3.
Biophys J ; 121(23): 4729-4739, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36196054

ABSTRACT

Protein allostery requires a communication channel for functional regulation between distal sites within a protein. In the molecular chaperone Hsp70, a two-domain enzyme, the ATP/ADP status of an N-terminal nucleotide-binding domain regulates the substrate affinity of a C-terminal substrate-binding domain. Recently available three-dimensional structures of Hsp70 in ATP/ADP states have provided deep insights into molecular pathways of allosteric signals. However, direct mechanical probing of long-range allosteric coupling between the ATP hydrolysis step and domain states is missing. Using laser optical tweezers, we examined the mechanical properties of a truncated two-domain DnaK(1-552ye) in apo/ADP/ATP- and peptide-bound states. We find that in the apo and ADP states, DnaK domains are mechanically stable and rigid. However, in the ATP state, substrate-binding domain (SBD)∗ye is mechanically destabilized as the result of interdomain docking followed by the unfolding of the α-helical lid. By observing the folding state of the SBD, we could observe the continuous ATP/ADP cycling of the enzyme in real time with a single molecule. The SBD lid closure is strictly coupled to the chemical steps of the ATP hydrolysis cycle even in the presence of peptide substrate.


Subject(s)
Adenosine Triphosphate , Peptides , Adenosine Diphosphate
4.
Int J Mol Sci ; 23(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269930

ABSTRACT

Heat shock proteins 70 (Hsp70) are chaperones consisting of a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD), the latter of which binds protein clients. After ATP binds to the NBD, the SBD α/ß subdomains' shared interface opens, and the open SBD docks to the NBD. Such allosteric effects are stabilized by the newly formed NBD-SBD interdomain contacts. In this paper, we examined how such an opening and formation of subdomain interfaces is affected during the evolution of Hsp70. In particular, insertion and deletion events (indels) can be highly disruptive for the mechanical events since such changes introduce a collective shift in the pairing interactions at communicating interfaces. Based on a multiple sequence alignment analysis of data collected from Swiss-Prot/UniProt database, we find several indel-free regions (IFR) in Hsp70. The two largest IFRs are located in interdomain regions that participate in allosteric structural changes. We speculate that the reason why the indels have a lower likelihood of occurrence in these regions is that indel events in these regions cause dysfunction in the protein due to perturbations of the mechanical balance. Thus, the development of functional allosteric machines requires including in the rational design a concept of the balance between structural elements.


Subject(s)
Adenosine Triphosphate , HSP70 Heat-Shock Proteins , Adenosine Triphosphate/metabolism , Allosteric Regulation , Binding Sites , HSP70 Heat-Shock Proteins/metabolism , Humans , Protein Binding , Protein Domains
5.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36142793

ABSTRACT

Deregulation of signalling pathways that regulate cell growth, survival, metabolism, and migration can frequently lead to the progression of cancer. Brain tumours are a large group of malignancies characterised by inter- and intratumoral heterogeneity, with glioblastoma (GBM) being the most aggressive and fatal. The present study aimed to characterise the expression of cancer pathway-related genes (n = 84) in glial tumour cell lines (A172, SW1088, and T98G). The transcriptomic data obtained by the qRT-PCR method were compared to different control groups, and the most appropriate control for subsequent interpretation of the obtained results was chosen. We analysed three widely used control groups (non-glioma cells) in glioblastoma research: Human Dermal Fibroblasts (HDFa), Normal Human Astrocytes (NHA), and commercially available mRNAs extracted from healthy human brain tissues (hRNA). The gene expression profiles of individual glioblastoma cell lines may vary due to the selection of a different control group to correlate with. Moreover, we present the original multicriterial decision making (MCDM) for the possible characterization of gene expression profiles. We observed deregulation of 75 genes out of 78 tested in the A172 cell line, while T98G and SW1088 cells exhibited changes in 72 genes. By comparing the delta cycle threshold value of the tumour groups to the mean value of the three controls, only changes in the expression of 26 genes belonging to the following pathways were identified: angiogenesis FGF2; apoptosis APAF1, CFLAR, XIAP; cellular senescence BM1, ETS2, IGFBP5, IGFBP7, SOD1, TBX2; DNA damage and repair ERCC5, PPP1R15A; epithelial to mesenchymal transition SNAI3, SOX10; hypoxia ADM, ARNT, LDHA; metabolism ATP5A1, COX5A, CPT2, PFKL, UQCRFS1; telomeres and telomerase PINX1, TINF2, TNKS, and TNKS2. We identified a human astrocyte cell line and normal human brain tissue as the appropriate control group for an in vitro model, despite the small sample size. A different method of assessing gene expression levels produced the same disparities, highlighting the need for caution when interpreting the accuracy of tumorigenesis markers.


Subject(s)
Brain Neoplasms , Glioblastoma , Tankyrases , Telomerase , Brain Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Humans , Superoxide Dismutase-1/genetics , Tankyrases/metabolism , Telomerase/metabolism , Tumor Suppressor Proteins/genetics
6.
Proc Natl Acad Sci U S A ; 115(18): 4666-4671, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29669923

ABSTRACT

The folding pathways of large proteins are complex, with many of them requiring the aid of chaperones and others folding spontaneously. Along the folding pathways, partially folded intermediates are frequently populated; their role in the driving of the folding process is unclear. The structures of these intermediates are generally not amenable to high-resolution structural techniques because of their transient nature. Here we employed single-molecule force measurements to scrutinize the hierarchy of intermediate structures along the folding pathway of the nucleotide binding domain (NBD) of Escherichia coli Hsp70 DnaK. DnaK-NBD is a member of the sugar kinase superfamily that includes Hsp70s and the cytoskeletal protein actin. Using optical tweezers, a stable nucleotide-binding competent en route folding intermediate comprising lobe II residues (183-383) was identified as a critical checkpoint for productive folding. We obtained a structural snapshot of this folding intermediate that shows native-like conformation. To assess the fundamental role of folded lobe II for efficient folding, we turned our attention to yeast mitochondrial NBD, which does not fold without a dedicated chaperone. After replacing the yeast lobe II residues with stable E. coli lobe II, the obtained chimeric protein showed native-like ATPase activity and robust folding into the native state, even in the absence of chaperone. In summary, lobe II is a stable nucleotide-binding competent folding nucleus that is the key to time-efficient folding and possibly resembles a common ancestor domain. Our findings provide a conceptual framework for the folding pathways of other members of this protein superfamily.


Subject(s)
Actins/chemistry , Adenosine Triphosphate/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , HSP70 Heat-Shock Proteins/chemistry , Protein Folding , Single Molecule Imaging , Actins/metabolism , Adenosine Triphosphate/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Domains
7.
Proc Natl Acad Sci U S A ; 114(23): 6040-6045, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533394

ABSTRACT

Owing to the cooperativity of protein structures, it is often almost impossible to identify independent subunits, flexible regions, or hinges simply by visual inspection of static snapshots. Here, we use single-molecule force experiments and simulations to apply tension across the substrate binding domain (SBD) of heat shock protein 70 (Hsp70) to pinpoint mechanical units and flexible hinges. The SBD consists of two nanomechanical units matching 3D structural parts, called the α- and ß-subdomain. We identified a flexible region within the rigid ß-subdomain that gives way under load, thus opening up the α/ß interface. In exactly this region, structural changes occur in the ATP-induced opening of Hsp70 to allow substrate exchange. Our results show that the SBD's ability to undergo large conformational changes is already encoded by passive mechanics of the individual elements.


Subject(s)
Adenosine Triphosphate/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Allosteric Regulation , Allosteric Site , Amino Acid Sequence , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/ultrastructure , Kinetics , Microscopy, Atomic Force/methods , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Substrate Specificity
8.
Entropy (Basel) ; 22(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-33286473

ABSTRACT

Recent advances in single-molecule science have revealed an astonishing number of details on the microscopic states of molecules, which in turn defined the need for simple, automated processing of numerous time-series data. In particular, large datasets of time series of single protein molecules have been obtained using laser optical tweezers. In this system, each molecular state has a separate time series with a relatively uneven composition from the point of view-point of local descriptive statistics. In the past, uncertain data quality and heterogeneity of molecular states were biased to the human experience. Because the data processing information is not directly transferable to the black-box-framework for an efficient classification, a rapid evaluation of a large number of time series samples simultaneously measured may constitute a serious obstacle. To solve this particular problem, we have implemented a supervised learning method that combines local entropic models with the global Lehmer average. We find that the methodological combination is suitable to perform a fast and simple categorization, which enables rapid pre-processing of the data with minimal optimization and user interventions.

9.
Biochemistry ; 58(47): 4744-4750, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31120736

ABSTRACT

Single-molecule mechanical experiments have proven to be ideal tools for probing the energetics and mechanics of large proteins and domains. In this paper, we investigate the nucleotide-dependent unfolding mechanics of the nucleotide-binding domain (NBD) of the Hsp70 chaperone DnaK. The NBD binds ADP or ATP in the binding cleft formed by lobe I and lobe II, which consists of two subdomains each. When force is applied to the termini of the NBD, the observed unfolding forces are independent of the nucleotide state. In contrast, when force is applied across the nucleotide-binding pocket, the unfolding forces report specifically on the nucleotide-phosphate state. In this active, ligand-responsive pulling geometry, we observed a bifurcation of the unfolding pathway; the pathway proceeds either through a cooperative "coupled pathway" or through a noncooperative "uncoupled pathway". The partitioning between individual unfolding pathways can be effectively tuned by mutation or by the nucleotide exchange factor GrpE, i.e., by the factors affecting the strength of the lobe I-lobe II interactions within the native NBD. These experiments provide important insight into the molecular origin of the internal signaling between the subdomains of the nucleotide-binding domain of Hsp70 proteins and how signals are efficiently transferred inside the protein molecule.


Subject(s)
Biomechanical Phenomena , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Protein Domains/physiology , Signal Transduction , Single Molecule Imaging/methods , Adenosine Triphosphate/metabolism , Escherichia coli Proteins/physiology , Ligands , Protein Binding , Protein Folding
10.
Proc Natl Acad Sci U S A ; 112(33): 10389-94, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26240360

ABSTRACT

The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily.


Subject(s)
Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Nucleotides/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Actins/chemistry , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , Computer Simulation , Elasticity , Lasers , Mitochondria/metabolism , Models, Molecular , Molecular Chaperones , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Signal Transduction
11.
Int J Mol Sci ; 19(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337899

ABSTRACT

Saccharomyces cerevisiae Fet3p is a multicopper oxidase that contains three cupredoxin-like domains and four copper ions located in three distinct metal sites (T1 in domain 3; T2 and the binuclear T3 at the interface between domains 1 and 3). To probe the role of the copper sites in Fet3p thermodynamic stability, we performed urea-induced unfolding experiments with holo-, apo- and three partially-metallated (T1, T2 and T1/T2 sites depleted of copper) forms of Fet3p. Using a combination of spectroscopic probes (circular dichroism, fluorescence intensity and maximum, 8-anilinonaphthalene-1-sulfonic acid (ANS) emission, oxidase activity and blue color), we reveal that all forms of Fet3p unfold in a four-state reaction with two partially-folded intermediates. Using phase diagrams, it emerged that Fet3p with all copper sites filled had a significantly higher stability as compared to the combined contributions of the individual copper sites. Hence, there is long-range inter-domain communication between distal copper sites that contribute to overall Fet3p stability.


Subject(s)
Ceruloplasmin/metabolism , Copper/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Apoproteins/metabolism , Enzyme Stability , Mutant Proteins/metabolism , Protein Denaturation/drug effects , Protein Folding/drug effects , Spectrometry, Fluorescence , Urea/pharmacology
12.
Proc Natl Acad Sci U S A ; 111(15): 5568-73, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24706888

ABSTRACT

Proline switches, controlled by cis-trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. In this study, we use single-molecule mechanical measurements to develop a full kinetic and energetic description of a highly conserved proline switch in the force-sensing domain 20 of human filamin and how prolyl isomerization modulates the force-sensing mechanism. Proline isomerization toggles domain 20 between two conformations. A stable cis conformation with slow unfolding, favoring the autoinhibited closed conformation of filamin's force-sensing domain pair 20-21, and a less stable, uninhibited conformation promoted by the trans form. The data provide detailed insight into the folding mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency in modulating force-sensing, thus combining two previously unconnected regulatory mechanisms, proline switches and mechanosensing.


Subject(s)
Filamins/metabolism , Mechanotransduction, Cellular/physiology , Proline/metabolism , Protein Conformation , Amino Acid Sequence , Cloning, Molecular , Humans , Isomerism , Kinetics , Likelihood Functions , Molecular Sequence Data , Optical Tweezers , Protein Folding , Sequence Alignment
13.
Proc Natl Acad Sci U S A ; 110(45): 18156-61, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145407

ABSTRACT

In this study we expand the accessible dynamic range of single-molecule force spectroscopy by optical tweezers to the microsecond range by fast sampling. We are able to investigate a single molecule for up to 15 min and with 300-kHz bandwidth as the protein undergoes tens of millions of folding/unfolding transitions. Using equilibrium analysis and autocorrelation analysis of the time traces, the full energetics as well as real-time kinetics of the ultrafast folding of villin headpiece 35 and a stable asparagine 68 alanine/lysine 70 methionine variant can be measured directly. We also performed Brownian dynamics simulations of the response of the bead-DNA system to protein-folding fluctuations. All key features of the force-dependent deflection fluctuations could be reproduced: SD, skewness, and autocorrelation function. Our measurements reveal a difference in folding pathway and cooperativity between wild-type and stable variant of headpiece 35. Autocorrelation force spectroscopy pushes the time resolution of single-molecule force spectroscopy to ∼10 µs thus approaching the timescales accessible for all atom molecular dynamics simulations.


Subject(s)
Microfilament Proteins/chemistry , Models, Biological , Protein Folding , Spectrum Analysis/methods , Amino Acid Sequence , Chromatography, Gel , Circular Dichroism , Escherichia coli , Fluorescence , Humans , Kinetics , Microfilament Proteins/genetics , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation/genetics , Optical Tweezers , Thermodynamics
14.
Biophys J ; 108(3): 678-86, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25650934

ABSTRACT

Many small proteins fold highly cooperatively in an all-or-none fashion and thus their native states are well protected from thermal fluctuations by an extensive network of interactions across the folded structure. Because protein structures are stabilized by local and nonlocal interactions among distal residues, dissecting individual substructures from the context of folded proteins results in large destabilization and loss of unique three-dimensional structure. Thus, mini-protein substructures can only rarely be derived from natural templates. Here, we describe a compact native 24-residues-long supersecondary structure derived from the hyperstable villin headpiece subdomain consisting of helices 2 and 3 (HP24). Using a combination of experimental techniques, including NMR and small-angle x-ray scattering, as well as all-atom replica exchange molecular-dynamics simulations, we show that a variant with stabilizing substitutions (HP24stab) forms a densely packed and compact conformation. In HP24stab, interactions between helices 2 and 3 are similar to those observed in native folded HP35, and the two helices cooperatively stabilize each other by completing the hydrophobic core lining the central part of HP35. Interestingly, even though the HP24wt fragment shows a more expanded and less structured conformation, NMR and simulations demonstrate a preference for a native-like topology. Thus, the two stabilizing residues in HP24stab shift the energy balance toward the native state, leading to a minimal folding motif.


Subject(s)
Microfilament Proteins/chemistry , Amino Acid Sequence , Animals , Chickens , Computer Simulation , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , Scattering, Small Angle , X-Ray Diffraction
15.
J Appl Crystallogr ; 57(Pt 4): 1205-1211, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108805

ABSTRACT

With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source.

16.
J Appl Crystallogr ; 57(Pt 3): 842-847, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846773

ABSTRACT

X-ray crystallography is an established tool to probe the structure of macromolecules with atomic resolution. Compared with alternative techniques such as single-particle cryo-electron microscopy and micro-electron diffraction, X-ray crystallography is uniquely suited to room-temperature studies and for obtaining a detailed picture of macromolecules subjected to an external electric field (EEF). The impact of an EEF on proteins has been extensively explored through single-crystal X-ray crystallography, which works well with larger high-quality protein crystals. This article introduces a novel design for a 3D-printed in situ crystallization plate that serves a dual purpose: fostering crystal growth and allowing the concurrent examination of the effects of an EEF on crystals of varying sizes. The plate's compatibility with established X-ray crystallography techniques is evaluated.

17.
Biochemistry ; 52(12): 2089-96, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23418749

ABSTRACT

Human aryl hydrocarbon receptor (AHR) interacting protein (AIP) and AIP like 1 (AIPL1) are cochaperones of Hsp90 which share 49% sequence identity. Both proteins contain an N-terminal FKBP-like prolyl peptidyl isomerase (PPIase) domain followed by a tetratricopeptide repeat (TPR) domain. In addition, AIPL1 harbors a unique C-terminal proline-rich domain (PRD). Little is known about the functional relevance of the individual domains and how these contribute to the association with Hsp90. In this study, we show that these cochaperones differ from other Hsp90-associated PPIase as their FKBP domains are enzymatically inactive. Furthermore, in contrast to other large PPIases, AIP is inactive as a chaperone. AIPL1, however, exhibits chaperone activity and prevents the aggregation of non-native proteins. The unique proline-rich domain of AIPL1 is important for its chaperone function as its truncation severely affects the ability of AIPL1 to bind non-native proteins. Furthermore, the proline-rich domain decreased the affinity of AIPL1 for Hsp90, implying that this domain acts as a negative regulator of the Hsp90 interaction besides being necessary for efficient binding of AIPL1 to non-native proteins.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Eye Proteins/chemistry , Eye Proteins/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Carrier Proteins/genetics , Circular Dichroism , Eye Proteins/genetics , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Proline/chemistry , Protein Interaction Domains and Motifs , Protein Stability , Sequence Homology, Amino Acid , Structural Homology, Protein , Surface Plasmon Resonance , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism
18.
J Am Chem Soc ; 135(11): 4372-9, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23445547

ABSTRACT

Folding enzymes often use distinct domains for the interaction with a folding protein chain and for the catalysis of intrinsically slow reactions such as prolyl cis/trans isomerization. Here, we investigated the refolding reaction of ribonuclease T1 in the presence of the prolyl isomerase SlyD from Escherichia coli to examine how this enzyme catalyzes the folding of molecules with an incorrect trans proline isomer and how it modulates the conformational folding of the molecules with the correct cis proline. The kinetic analysis suggests that prolyl cis → trans isomerization in the SlyD-bound state shows a rate near 100 s(-1) and is thus more than 10(4)-fold accelerated, relative to the uncatalyzed reaction. As a consequence of its fast binding and efficient catalysis, SlyD retards the conformational folding of the protein molecules with the correct cis isomer, because it promotes the formation of the species with the incorrect trans isomer. In the presence of ≥1 µM SlyD, protein molecules with cis and trans prolyl isomers refold with identical rates, because SlyD-catalyzed cis/trans equilibration is faster than conformational folding. The cis or trans state of a particular proline is thus no longer a determinant for the rate of folding.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Peptidylprolyl Isomerase/metabolism , Protein Refolding , Aspergillus/chemistry , Aspergillus/enzymology , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Isomerism , Models, Molecular , Peptidylprolyl Isomerase/chemistry , Proline/chemistry , Proline/metabolism , Protein Binding , Protein Conformation , Ribonuclease T1/chemistry , Ribonuclease T1/metabolism
19.
Colloids Surf B Biointerfaces ; 221: 112983, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401959

ABSTRACT

Here, we examined the aggregation mechanism and structures of the pathological human multiple myeloma light chain aggregates (hLC) after disrupting stabilizing disulfide bonds by various reducing agents. The aggregation kinetics were measured in the presence of three commonly used disulfide reducers (TCEP, DTT and glutathione), and the resulting aggregates were visualized by the combination of light and confocal/super-resolution STED microscopy. We find that aggregation kinetics can be described by two apparent macroscopic rate constants of the Finke-Watzky model related to the nucleation and the growth process. Surprisingly, the growth rate constants decreased at higher protein concentrations, which we interpret as the involvement of an aggregation active monomer particle that is successively depleted at high concentrations due to shifts in a monomer/dimer equilibrium. Seeding experiments demonstrated the specificity of the aggregates; only certain seeds accelerated the aggregation, while others eventually slowed down the aggregation. Three-dimensional visualization of the overall structures of the final aggregates at submicrometer resolution showed variable, reducer-specific branched morphologies with non-trivial fractal dimensions. Thus, the disruption of the stabilizing disulfide bonds in hLC leads to specific large, branched aggregates formed by the monomer-addition mechanism.


Subject(s)
Disulfides , Fractals , Humans , Glutathione , Kinetics , Microscopy, Confocal
20.
Protein Sci ; 32(8): e4722, 2023 08.
Article in English | MEDLINE | ID: mdl-37417849

ABSTRACT

Recombinant spider silk proteins can be prepared in scalable fermentation processes and have been proven as sources of biomaterials for biomedical and technical applications. Nanofibrils, formed through the self-assembly of these proteins, possess unique structural and mechanical properties, serving as fundamental building blocks for the fabrication of micro- and nanostructured scaffolds. Despite significant progress in utilizing nanofibrils-based morphologies of recombinant spider silk proteins, a comprehensive understanding of the molecular mechanisms of nanofibrils self-assembly remains a challenge. Here, a detailed kinetic study of nanofibril formation from a recombinant spider silk protein eADF4(C16) in dependence on the protein concentration, seeding, and temperature is provided. For the global fitting of kinetic data obtained during the fibril formation, we utilized the online platform AmyloFit. Evaluation of the data revealed that the self-assembly mechanism of recombinant spider silk is dominated by secondary nucleation. Thermodynamic analyses show that both primary and secondary nucleations, as well as the elongation step of the eADF4(C16), are endothermic processes.


Subject(s)
Nanostructures , Spiders , Animals , Silk/chemistry , Silk/metabolism , Kinetics , Recombinant Proteins/chemistry , Spiders/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL