Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cartilage ; 13(2): 19476035221098167, 2022.
Article in English | MEDLINE | ID: mdl-35549461

ABSTRACT

OBJECTIVE: A fusion protein of interleukin-4 and interleukin-10 (IL4-10 FP) was developed as a disease-modifying osteoarthritis drug (DMOAD), and chondroprotection, anti-inflammation, and analgesia have been suggested. To better understand the mechanisms behind its potential as DMOAD, this systematic narrative review aims to assess the potential of IL-4, IL-10 and the combination of IL-4 and IL-10 for the treatment of osteoarthritis. It describes the chondroprotective, anti-inflammatory, and analgesic effects of IL-4, IL-10, and IL4-10 FP. DESIGN: PubMed and Embase were searched for publications that were published from 1990 until May 21, 2021 (moment of search). Key search terms were: Osteoarthritis, Interleukin-4, and Interleukin-10. This yielded 2,479 hits, of which 43 were included in this review. RESULTS: IL-4 and IL-10 showed mainly protective effects on osteoarthritic cartilage in vitro and in vivo, as did IL4-10 FP. Both cytokines showed anti-inflammatory effects, but also proinflammatory effects. Only in vitro IL4-10 FP showed purely anti-inflammatory effects, indicating that proinflammatory effects of one cytokine can be counteracted by the other when given as a combination. Only a few studies investigated the analgesic effects of IL-4, IL-10 or IL4-10 FP. In vitro, IL-4 and IL4-10 FP were able to decrease pain mediators. In vivo, IL-4, IL-10, and IL4-10 FP were able to reduce pain. CONCLUSIONS: In conclusion, this review describes overlapping, but also different modes of action for the DMOAD effects of IL-4 and IL-10, giving an explanation for the synergistic effects found when applied as combination, as is the case for IL4-10 FP.


Subject(s)
Interleukin-4 , Osteoarthritis , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Disease Models, Animal , Interleukin-10/pharmacology , Interleukin-10/therapeutic use , Interleukin-4/pharmacology , Interleukin-4/therapeutic use , Osteoarthritis/drug therapy , Pain/drug therapy
2.
Cartilage ; 13(2_suppl): 1155S-1164S, 2021 12.
Article in English | MEDLINE | ID: mdl-34159843

ABSTRACT

OBJECTIVE: Ideally, disease-modifying osteoarthritis (OA) drugs (DMOAD) should combine chondroprotective, anti-inflammatory, and analgesic effects in a single molecule. A fusion protein of interleukin-4 (IL-4) and IL-10 (IL4-10 FP) possesses these combined effects. In this study, the DMOAD activity of rat IL4-10 FP (rIL4-10 FP) was tested in a rat model of surgically induced OA under metabolic dysregulation. DESIGN: rIL4-10 FP was produced with HEK293F cells. Bioactivity of purified rIL4-10 FP was determined in a whole blood assay. Male Wistar rats (n = 20) were fed a high-fat diet (HFD) to induce metabolic dysregulation. After 12 weeks, OA was induced according to the Groove model. Two weeks after OA induction, rats were randomly divided into 2 groups and treated with 10 weekly, intra-articular injections of either rIL4-10 FP (n = 10) or phosphate buffered saline (PBS; n = 10). Possible antibody formation was evaluated using ELISA, cartilage degeneration and synovial inflammation were evaluated by histology and mechanical allodynia was evaluated using the von Frey test. RESULTS: Intra-articular injections with rIL4-10 FP significantly reduced cartilage degeneration (P = 0.042) and decreased mechanical allodynia (P < 0.001) compared with PBS. Only mild synovial inflammation was found (nonsignificant), limiting detection of putative anti-inflammatory effects. Multiple injections of rIL4-10 FP did not induce antibodies against rIL4-10 FP. CONCLUSION: rIL4-10 FP showed chondroprotective and analgesic activity in a rat OA model with moderate cartilage damage, mild synovial inflammation, and pain. Future studies will need to address whether less frequent intra-articular injections, for example, with formulations with increased residence time, would also lead to DMOAD activity.


Subject(s)
Cartilage, Articular , Interleukin-10 , Interleukin-4 , Osteoarthritis , Recombinant Fusion Proteins , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Disease Models, Animal , HEK293 Cells , Humans , Interleukin-10/genetics , Interleukin-10/pharmacology , Interleukin-4/genetics , Interleukin-4/pharmacology , Male , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Rats , Rats, Wistar , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
3.
PLoS One ; 14(7): e0219587, 2019.
Article in English | MEDLINE | ID: mdl-31295306

ABSTRACT

OBJECTIVE: An ideal disease modifying osteoarthritis drug (DMOAD) has chondroprotective, anti-inflammatory, and analgesic effects. This study describes the production and characterization of a canine IL4-10 fusion protein (IL4-10 FP) and evaluates its in vivo DMOAD activity in a canine model of osteoarthritis (OA). DESIGN: The canine Groove model was used as an in vivo model of degenerative knee OA. Six weeks after OA induction dogs were intra-articularly injected weekly, for ten weeks, with either IL4-10 FP or phosphate buffered saline (PBS). In addition to the use of human IL4-10 FP, canine IL4-10 FP was developed and characterized in vitro, and tested in vivo. Force plate analysis (FPA) was performed to analyze joint loading as a proxy measure for pain. After ten weeks dogs were euthanized and cartilage and synovial tissue samples were analyzed by histochemistry (OARSI scores) and biochemistry (cartilage proteoglycan turnover). RESULTS: Repetitive intra-articular injections with human IL4-10 FP led to antibody formation, that blocked its functional activity. Therefore, a canine IL4-10 FP was developed, which completely inhibited LPS-induced TNFα production by canine blood cells, and increased proteoglycan synthesis of canine cartilage in vitro (p = 0.043). In vivo, canine IL4-10 FP restored the, by OA impaired, joint loading (p = 0.002) and increased cartilage proteoglycan content (p = 0.029). CONCLUSIONS: This first study on the potential DMOAD activity upon prolonged repeated treatment with IL4-10 FP demonstrates that a species-specific variant has anti-inflammatory and chondroprotective effects in vitro and chondroprotective and analgesic effects in vivo. These data warrant further research on the DMOAD potential of the IL4-10 FP.


Subject(s)
Dog Diseases/genetics , Interleukin-10/genetics , Interleukin-4/genetics , Osteoarthritis, Knee/genetics , Pain/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cartilage, Articular/metabolism , Cartilage, Articular/physiopathology , Disease Models, Animal , Dog Diseases/drug therapy , Dog Diseases/physiopathology , Dogs , Humans , Injections, Intra-Articular , Knee Joint/drug effects , Knee Joint/pathology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Pain/genetics , Proteoglycans , Recombinant Fusion Proteins/genetics , Synovial Membrane/metabolism , Synovial Membrane/pathology
SELECTION OF CITATIONS
SEARCH DETAIL