Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Environ Microbiol ; 24(8): 3625-3639, 2022 08.
Article in English | MEDLINE | ID: mdl-35229433

ABSTRACT

Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees.


Subject(s)
Mycobiome , Trees , Biodiversity , Forests , Fungi/genetics , Mycobiome/genetics , Trees/microbiology , Wood/microbiology
2.
Glob Chang Biol ; 28(3): 816-828, 2022 02.
Article in English | MEDLINE | ID: mdl-34747548

ABSTRACT

Human activity and climate change are increasing the spread of species across the planet, threatening biodiversity and ecosystem functions. Invasion engineers, such as birds, facilitate plant growth through manuring of soil, while native vegetation influences plant germination by creating suitable microhabitats which are especially valuable in cold and dry polar regions. Here we tested how penguin-derived nitrogen, several common Antarctic moss species and warming affect seed germination and growth of the non-native grass Agrostis capillaris under laboratory conditions. Experimental settings included a simulation of contemporary season-specific Antarctic light and temperature (2°C) conditions and a +5°C warming scenario. Mosses (Andreaea depressinervis, A. regularis, Sanionia uncinata and Chorisodontium aciphyllum) incorporated a range of nitrogen content and isotopic nitrogen signatures (δ15 N) due to variation in sampling proximity to penguin colonies. Moss species greatly affected time to germination with consequences for further growth under the simulated Antarctic conditions. Grass seeds germinated 10 days earlier among A. regularis compared to S. uncinata and C. aciphyllum and 26 days earlier compared to A. depressinervis. Moss-specific effects are likely related to microclimatic differences within the moss canopy. Warming reduced this moss influence. Grass emerged on average 20 days earlier under warming, leading to increased leaf count (88%), plant height (112%) and biomass (145%). Positive correlations were identified between moss and grass nitrogen content (r = 0.377), grass biomass (r = 0.332) and height (r = 0.742) with stronger effects under the warming scenario. Transfer of nitrogen from moss to grass was confirmed by δ15 N (r = 0.803). Overall, the results suggest a shift from temperature-limited to N-limited growth of invasive plants under increased warming in the maritime Antarctic.


Subject(s)
Bryophyta , Spheniscidae , Animals , Ecosystem , Humans , Nutrients , Poaceae , Soil , Temperature
3.
Mycorrhiza ; 32(3-4): 305-313, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35307782

ABSTRACT

The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.


Subject(s)
Mycorrhizae , Amino Acids/metabolism , Ecosystem , Mycorrhizae/metabolism , Plants/microbiology , Soil/chemistry , Soil Microbiology , Tundra
4.
Glob Chang Biol ; 23(10): 4257-4266, 2017 10.
Article in English | MEDLINE | ID: mdl-28675586

ABSTRACT

Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant-available N around the thaw-front. Because plant production in these peatlands is N-limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N-availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N-availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw-front (45 cm depth) and whether N-uptake (15 N-tracer) at the thaw-front occurs during maximum thaw-depth, coinciding with the end of the growing season. Moreover, we performed a unique 3-year belowground fertilization experiment with fully factorial combinations of deep- (thaw-front) and shallow-fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw-front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N-uptake from the thaw-front between autumn and spring when aboveground tissue is largely senescent. In response to 3-year shallow-belowground fertilization (S) both shallow- (Empetrum hermaphroditum) and deep-rooting species increased aboveground biomass and N-content, but only deep-rooting species responded positively to enhanced nutrient supply at the thaw-front (D). Moreover, the effects of shallow-fertilization and thaw-front fertilization on aboveground biomass production of the deep-rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant-available N released from thawing permafrost can form a thus far overlooked additional N-source for deep-rooting subarctic plant species and increase their biomass production beyond the already established impact of warming-driven enhanced shallow N-mineralization. This may result in shifts in plant community composition and may partially counteract the increased carbon losses from thawing permafrost.


Subject(s)
Biomass , Permafrost , Soil , Climate Change , Nitrogen , Plants
5.
New Phytol ; 206(2): 672-81, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25675853

ABSTRACT

Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes.


Subject(s)
Cycadopsida/genetics , Particle Size , Plant Leaves/genetics , Climate , Ecosystem , Fires , Phenotype , Phylogeny , Species Specificity , Temperature
6.
Glob Chang Biol ; 21(12): 4508-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26150277

ABSTRACT

Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems.


Subject(s)
Autotrophic Processes , Carbon Cycle , Climate Change , Global Warming , Heterotrophic Processes , Permafrost , Soil/chemistry , Alaska , Arctic Regions , Seasons , Sweden , Tundra , Wetlands
7.
Ambio ; 41 Suppl 3: 269-80, 2012.
Article in English | MEDLINE | ID: mdl-22864700

ABSTRACT

Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.


Subject(s)
Agricultural Irrigation , Ecosystem , Plant Development , Rain , Plants/classification , Siberia , Species Specificity , Sweden
8.
Ambio ; 41 Suppl 3: 231-45, 2012.
Article in English | MEDLINE | ID: mdl-22864697

ABSTRACT

Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.


Subject(s)
Climate , Ecosystem , Environmental Monitoring/methods , Trees/classification , Trees/physiology , Wood , Carbon Cycle , Species Specificity , Time Factors
9.
Front Plant Sci ; 13: 769551, 2022.
Article in English | MEDLINE | ID: mdl-35310622

ABSTRACT

A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark). The trait variation was explained by major taxa (38%), stem compartments (24%), and species within major taxa (19%). A continuous plant strategy gradient was found across and within taxa, running from hydraulic safe gymnosperms to conductive angiosperms. Both groups showed a second strategy gradient related to chemical defense. Gymnosperms strongly converged in their trait strategies because of their uniform tracheids. Angiosperms strongly diverged because of their different vessel arrangement and tissue types. The bark had higher concentrations of nutrients and phenolics whereas the wood had stronger physical defense. The gymnosperms have a conservative strategy associated with strong hydraulic safety and physical defense, and a narrow, specialized range of trait values, which allow them to grow well in drier and unproductive habitats. The angiosperm species show a wider trait variation in all stem compartments, which makes them successful in marginal- and in mesic, productive habitats. The associations between multiple wood and bark traits collectively define a slow-fast stem strategy spectrum as is seen also for each stem compartment.

10.
New Phytol ; 186(4): 879-889, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20345640

ABSTRACT

*Nutrient resorption and leaching resistance, through their roles in reducing nutrient losses, are important determinants of plant nutrient economy. However, the contributions of fine-stem and fine-root resorption, as well as leaf leaching resistance, have largely been overlooked. *We quantified the relative contributions of these processes to nutrient depletion of these organs during their senescence using 40 subarctic vascular species from aquatic, riparian and terrestrial environments. We hypothesized that interspecific variation in organ nutrient resorption and leaf leaching would be linked to the species' nutrient acquisitive-conservative strategies, as quantified for a set of common-organ nutrient/carbon economics traits. *The subarctic flora generally had both high resistance to leaching and high internal nutrient recycling. Average nutrient resorption efficiencies were substantial for leaves (nitrogen (N), 66 +/- 3% SE; phosphorus (P), 63 +/- 4%), fine stems (N, 48 +/- 4%; P, 56 +/- 4%) and fine roots (N, 27 +/- 7%; P, 57 +/- 6%). The link between nutrient resorption and other nutrient/carbon economics traits was very weak across species, for all three organs. *These results emphasize the potential importance of resorption processes for the plant nutrient budget. They also highlight the idiosyncrasies of the relationship between resorption processes and plant economics, which is potentially influenced by several plant physiological and structural adaptations to environmental factors other than nutrient stress.


Subject(s)
Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stems/metabolism , Plants/metabolism , Quantitative Trait, Heritable , Arctic Regions , Carbon/metabolism , Cellular Senescence , Organ Specificity , Plant Leaves/cytology
11.
Ecology ; 91(12): 3686-97, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21302839

ABSTRACT

The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown. In order to fill these gaps, we applied a novel method to study long-term wood decomposition of 15 tree species in a Bolivian semi-evergreen tropical moist forest. We hypothesized that interspecific differences in species traits are important drivers of variation in wood decomposition rates. Wood decomposition rates (fractional mass loss) varied between 0.01 and 0.31 yr(-1). We measured 10 different chemical, anatomical, and morphological traits for all species. The species' average traits were useful predictors of wood decomposition rates, particularly the average diameter (dbh) of the tree species (R2 = 0.41). Lignin concentration further increased the proportion of explained inter-specific variation in wood decomposition (both negative relations, cumulative R2 = 0.55), although it did not significantly explain variation in wood decomposition rates if considered alone. When dbh values of the actual dead trees sampled for decomposition rate determination were used as a predictor variable, the final model (including dead tree dbh and lignin concentration) explained even more variation in wood decomposition rates (R2 = 0.71), underlining the importance of dbh in wood decomposition. Other traits, including wood density, wood anatomical traits, macronutrient concentrations, and the amount of phenolic extractives could not significantly explain the variation in wood decomposition rates. The surprising results of this multi-species study, in which for the first time a large set of traits is explicitly linked to wood decomposition rates, merits further testing in other forest ecosystems.


Subject(s)
Biodegradation, Environmental , Trees , Wood , Climate , Species Specificity , Time Factors , Wood/chemistry
12.
Oecologia ; 162(3): 781-90, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20155374

ABSTRACT

Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.


Subject(s)
Plants/metabolism , Phylogeny , Spain
14.
Nat Commun ; 11(1): 1627, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32242076

ABSTRACT

Inland waters (rivers, lakes and ponds) are important conduits for the emission of terrestrial carbon in Arctic permafrost landscapes. These emissions are driven by turnover of contemporary terrestrial carbon and additional pre-aged (Holocene and late-Pleistocene) carbon released from thawing permafrost soils, but the magnitude of these source contributions to total inland water carbon fluxes remains unknown. Here we present unique simultaneous radiocarbon age measurements of inland water CO2, CH4 and dissolved and particulate organic carbon in northeast Siberia during summer. We show that >80% of total inland water carbon was contemporary in age, but pre-aged carbon contributed >50% at sites strongly affected by permafrost thaw. CO2 and CH4 were younger than dissolved and particulate organic carbon, suggesting emissions were primarily fuelled by contemporary carbon decomposition. Our findings reveal that inland water carbon emissions from permafrost landscapes may be more sensitive to changes in contemporary carbon turnover than the release of pre-aged carbon from thawing permafrost.

15.
Ecol Lett ; 12(8): 758-64, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19500130

ABSTRACT

The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.


Subject(s)
Adaptation, Physiological/physiology , Corydalis/physiology , Plant Roots/growth & development , Snow , Isotope Labeling , Nitrogen Isotopes/metabolism , Plant Roots/anatomy & histology , Russia
16.
Ecol Evol ; 8(6): 3086-3097, 2018 03.
Article in English | MEDLINE | ID: mdl-29607008

ABSTRACT

Suboptimal environmental conditions are ubiquitous in nature and commonly drive the outcome of biological interactions in community processes. Despite the importance of biological interactions for community processes, knowledge on how species interactions are affected by a limiting resource, for example, low food availability, remains limited. Here, we tested whether variation in food supply causes nonadditive consumption patterns, using the macroinvertebrate community of intertidal sandy beaches as a model system. We quantified isotopically labeled diatom consumption by three macroinvertebrate species (Bathyporeia pilosa, Haustorius arenarius, and Scolelepis squamata) kept in mesocosms in either monoculture or a three-species community at a range of diatom densities. Our results show that B. pilosa was the most successful competitor in terms of consumption at both high and low diatom density, while H. arenarius and especially S. squamata consumed less in a community than in their respective monocultures. Nonadditive effects on consumption in this macroinvertebrate community were present and larger than mere additive effects, and similar across diatom densities. The underlying species interactions, however, did change with diatom density. Complementarity effects related to niche-partitioning were the main driver of the net diversity effect on consumption, with a slightly increasing contribution of selection effects related to competition with decreasing diatom density. For the first time, we showed that nonadditive effects of consumption are independent of food availability in a macroinvertebrate community. This suggests that, in communities with functionally different, and thus complementary, species, nonadditive effects can arise even when food availability is low. Hence, at a range of environmental conditions, species interactions hold important potential to alter ecosystem functioning.

17.
Ecol Lett ; 10(7): 619-27, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17542940

ABSTRACT

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.


Subject(s)
Cold Climate , Ecosystem , Greenhouse Effect , Models, Biological , Plant Development , Plant Leaves/metabolism , Analysis of Variance , Carbon/chemistry , Plants/metabolism , Species Specificity , Sweden
18.
FEMS Microbiol Ecol ; 56(2): 178-87, 2006 May.
Article in English | MEDLINE | ID: mdl-16629748

ABSTRACT

Symbiotic interactions are thought to play a key role in ecosystems. Empirical evidence for the impact of symbiotic bacteria on plant communities is, however, extremely scarce because of experimental constraints. Here, in three complementary experiments, we show that nitrogen-fixing rhizobia bacteria act as a determinant of plant community structure and diversity. Grassland microcosms inoculated with a mixture of rhizobia had a higher above-ground plant productivity (+35%), contained more nitrogen (+85%) and had significant higher community evenness (+34%) than control microcosms without rhizobia. Moreover, three of the four studied legume species required rhizobia to successfully coexist with other plant species. In contrast, the growth and survival of three grass and five forb species were not affected by the presence or absence of rhizobia. Finally, our results also showed that the legume species largely relied on symbiotically fixed nitrogen, both in the field and in the microcosms. This indicates that results in the microcosms are indicative for processes occurring in the field. It is concluded that symbiotic interactions between plants and prokaryotes can contribute to plant productivity, plant community structure and acquisition of limiting resources in legume-rich grassland communities.


Subject(s)
Ecosystem , Fabaceae/microbiology , Magnoliopsida/growth & development , Poaceae/growth & development , Rhizobium/physiology , Symbiosis , Asteraceae/growth & development , Asteraceae/microbiology , Caryophyllaceae/growth & development , Caryophyllaceae/microbiology , Fabaceae/growth & development , Geraniaceae/growth & development , Geraniaceae/microbiology , Magnoliopsida/microbiology , Nitrogen/metabolism , Nitrogen Fixation , Plantago/growth & development , Plantago/microbiology , Poaceae/microbiology , Soil/analysis , Soil Microbiology
19.
Ecol Evol ; 6(22): 8223-8234, 2016 11.
Article in English | MEDLINE | ID: mdl-27878090

ABSTRACT

Fire affects and is affected by plants. Vegetation varies in flammability, that is, its general ability to burn, at different levels of ecological organization. To scale from individual plant traits to community flammability states, understanding trait effects on species flammability variation and their interaction is important. Plant traits are the cumulative result of evolution and they show, to differing extents, phylogenetic conservatism. We asked whether phylogenetic distance between species predicts species mixture effects on litterbed flammability. We conducted controlled laboratory burns for 34 phylogenetically wide-ranging species and 34 random two-species mixtures from them. Generally, phylogenetic distance did not predict species mixture effects on flammability. Across the plant phylogeny, most species were flammable except those in the non-Pinus Pinaceae, which shed small needles producing dense, poorly ventilated litterbeds above the packing threshold and therefore nonflammable. Consistently, either positive or negative dominance effects on flammability of certain flammable or those non-flammable species were found in mixtures involving the non-Pinus Pinaceae. We demonstrate litter particle size is key to explaining species nonadditivity in fuelbed flammability. The potential of certain species to influence fire disproportionately to their abundance might increase the positive feedback effects of plant flammability on community flammability state if flammable species are favored by fire.

20.
ISME J ; 10(2): 389-99, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26172208

ABSTRACT

Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.


Subject(s)
Biodiversity , Fabaceae/microbiology , Fungi/physiology , Mycorrhizae/physiology , Plant Roots/microbiology , Seedlings/microbiology , Symbiosis , Bacteria/growth & development , Bacterial Physiological Phenomena , Fabaceae/growth & development , Fungi/growth & development , Mycorrhizae/growth & development , Nitrogen/metabolism , Plant Roots/growth & development , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL