Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669795

ABSTRACT

AdipoRon, an adiponectin receptor agonist, elicits similar antidiabetic, anti-atherogenic, and anti-inflammatory effects on mouse models as adiponectin does. Since AdipoRon can cross the blood-brain barrier, its chronic effects on regulating hippocampal function are yet to be examined. This study investigated whether AdipoRon treatment promotes hippocampal neurogenesis and spatial recognition memory in a dose-dependent manner. Adolescent male C57BL/6J mice received continuous treatment of either 20 mg/kg (low dose) or 50 mg/kg (high dose) AdipoRon or vehicle intraperitoneally for 14 days, followed by the open field test to examine anxiety and locomotor activity, and the Y maze test to examine hippocampal-dependent spatial recognition memory. Immunopositive cell markers of neural progenitor cells, immature neurons, and newborn cells in the hippocampal dentate gyrus were quantified. Immunosorbent assays were used to measure the serum levels of factors that can regulate hippocampal neurogenesis, including adiponectin, brain-derived neurotrophic factor (BDNF), and corticosterone. Our results showed that 20 mg/kg AdipoRon treatment significantly promoted hippocampal cell proliferation and increased serum levels of adiponectin and BDNF, though there were no effects on spatial recognition memory and locomotor activity. On the contrary, 50 mg/kg AdipoRon treatment impaired spatial recognition memory, suppressed cell proliferation, neuronal differentiation, and cell survival associated with reduced serum levels of BDNF and adiponectin. The results suggest that a low-dose AdipoRon treatment promotes hippocampal cell proliferation, while a high-dose AdipoRon treatment is detrimental to the hippocampus function.


Subject(s)
Aging/physiology , Hippocampus/physiology , Neurogenesis/drug effects , Piperidines/pharmacology , Adiponectin/blood , Animals , Blood Glucose/metabolism , Brain-Derived Neurotrophic Factor/blood , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Corticosterone/blood , Dentate Gyrus/drug effects , Dentate Gyrus/physiology , Hippocampus/drug effects , Male , Mice, Inbred C57BL , Models, Biological , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/metabolism , Spatial Memory/drug effects
2.
J Neurosci ; 39(29): 5794-5815, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31133559

ABSTRACT

Frontotemporal dementia (FTD) is characterized by neuronal loss in the frontal and temporal lobes of the brain. Here, we provide the first evidence of striking morphological alterations in dentate granule cells (DGCs) of FTD patients and in a mouse model of the disease, TauVLW mice. Taking advantage of the fact that the hippocampal dentate gyrus (DG) gives rise to newborn DGCs throughout the lifetime in rodents, we used RGB retroviruses to study the temporary course of these alterations in newborn DGCs of female TauVLW mice. In addition, retroviruses that encode either PSD95:GFP or Syn:GFP revealed striking alterations in the afferent and efferent connectivity of newborn TauVLW DGCs, and monosynaptic retrograde rabies virus tracing showed that these cells are disconnected from distal brain regions and local sources of excitatory innervation. However, the same cells exhibited a predominance of local inhibitory innervation. Accordingly, the expression of presynaptic and postsynaptic markers of inhibitory synapses was markedly increased in the DG of TauVLW mice and FTD patients. Moreover, an increased number of neuropeptide Y-positive interneurons in the DG correlated with a reduced number of activated egr-1+ DGCs in TauVLW mice. Finally, we tested the therapeutic potential of environmental enrichment and chemoactivation to reverse these alterations in mice. Both strategies reversed the morphological alterations of newborn DGCs and partially restored their connectivity in a mouse model of the disease. Moreover, our data point to remarkable morphological similarities between the DGCs of TauVLW mice and FTD patients.SIGNIFICANCE STATEMENT We show, for the first time to our knowledge, that the population of dentate granule cells is disconnected from other regions of the brain in the neurodegenerative disease frontotemporal dementia (FTD). These alterations were observed in FTD patients and in a mouse model of this disease. Moreover, we tested the therapeutic potential of two strategies, environmental enrichment and chemoactivation, to stimulate the activity of these neurons in mice. We found that some of the alterations were reversed by these therapeutic interventions.


Subject(s)
Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Disease Models, Animal , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Neurogenesis/physiology , Age Factors , Animals , Female , Frontotemporal Dementia/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
3.
Physiology (Bethesda) ; 32(6): 410-424, 2017 11.
Article in English | MEDLINE | ID: mdl-29021361

ABSTRACT

Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.


Subject(s)
Brain/physiology , Physical Conditioning, Animal/physiology , Running/physiology , Animals , Brain/metabolism , Exercise/physiology , Humans , Neurons/metabolism , Neurons/physiology , Neurotransmitter Agents/metabolism
4.
Brain ; 139(Pt 3): 662-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26912638

ABSTRACT

Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry-brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.


Subject(s)
Aging/physiology , Exercise/physiology , Hippocampus/physiology , Memory Disorders/therapy , Memory/physiology , Aging/psychology , Alzheimer Disease/diagnosis , Alzheimer Disease/prevention & control , Animals , Humans , Memory Disorders/diagnosis , Neuronal Plasticity/physiology
5.
Neuroimage ; 131: 29-41, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26589333

ABSTRACT

Exercise improves cognition in humans and animals. Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain area important for learning and memory. It is unclear how running modifies the circuitry of new dentate gyrus neurons to support their role in memory function. Here we combine retroviral labeling with rabies virus mediated trans-synaptic retrograde tracing to define and quantify new neuron afferent inputs in young adult male C57Bl/6 mice, housed with or without a running wheel for one month. Exercise resulted in a shift in new neuron networks that may promote sparse encoding and pattern separation. Neurogenesis increased in the dorsal, but not the ventral, dentate gyrus by three-fold, whereas afferent traced cell labeling doubled in number. Regional analysis indicated that running differentially affected specific inputs. Within the hippocampus the ratio of innervation from inhibitory interneurons and glutamatergic mossy cells to new neurons was reduced. Distal traced cells were located in sub-cortical and cortical regions, including perirhinal, entorhinal and sensory cortices. Innervation from entorhinal cortex (EC) was augmented, in proportion to the running-induced enhancement of adult neurogenesis. Within EC afferent input and short-term synaptic plasticity from lateral entorhinal cortex, considered to convey contextual information to the hippocampus was increased. Furthermore, running upregulated innervation from regions important for spatial memory and theta rhythm generation, including caudo-medial entorhinal cortex and subcortical medial septum, supra- and medial mammillary nuclei. Altogether, running may facilitate contextual, spatial and temporal information encoding by increasing adult hippocampal neurogenesis and by reorganization of new neuron circuitry.


Subject(s)
Aging/physiology , Cerebellar Nuclei/physiology , Nerve Net/physiology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Running/physiology , Animals , Male , Mice , Mice, Inbred C57BL
6.
J Neurosci ; 34(46): 15139-49, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25392482

ABSTRACT

Here we summarize topics covered in an SFN symposium that considered how and why exercise and energy intake affect neuroplasticity and, conversely, how the brain regulates peripheral energy metabolism. This article is not a comprehensive review of the subject, but rather a view of how the authors' findings fit into a broader context. Emerging findings elucidate cellular and molecular mechanisms by which exercise and energy intake modify the plasticity of neural circuits in ways that affect brain health. By enhancing neurogenesis, synaptic plasticity and neuronal stress robustness, exercise and intermittent energy restriction/fasting may optimize brain function and forestall metabolic and neurodegenerative diseases. Moreover, brain-centered glucoregulatory and immunomodulating systems that mediate peripheral health benefits of intermittent energetic challenges have recently been described. A better understanding of adaptive neural response pathways activated by energetic challenges will enable the development and optimization of interventions to reduce the burden of disease in our communities.


Subject(s)
Brain/physiology , Exercise/physiology , Glucose/metabolism , Homeostasis , Motor Activity/physiology , Neuronal Plasticity/physiology , Animals , Brain/metabolism , Fasting/physiology , Humans , Neurogenesis/physiology , Stress, Psychological/physiopathology
7.
Brain Behav Immun ; 45: 60-70, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25449671

ABSTRACT

Schizophrenia is associated with deficits in the hippocampus, a brain area important for learning and memory. The dentate gyrus (DG) of the hippocampus develops both before and after birth. To study the relative contribution of mature and adult-born DG granule cells to disease etiology, we compared both cell populations in a mouse model of psychiatric illness resulting from maternal immune activation. Polyriboinosinic-polyribocytidilic acid (PolyIC, 5mg/kg) or saline was given on gestation day 15 to pregnant female C57Bl/6 mice. Male offspring (n=105), was administered systemic bromodeoxyuridine (BrdU, 50mg/kg) (n=52) or intracerebral retroviral injection into the DG (n=53), to label dividing cells at one month of age. Two months later behavioral tests were performed to evaluate disease phenotype. Immunohistochemistry and whole-cell patch clamping were used to assess morphological and physiological characteristics of DG cells. Three-month-old PolyIC exposed male offspring exhibited deficient pre-pulse inhibition, spatial maze performance and motor coordination, as well as increased depression-like behavior. Histological analysis showed reduced DG volume and parvalbumin positive interneuron number. Both mature and new hippocampal neurons showed modifications in intrinsic properties such as increased input resistance and lower current threshold, and decreased action potential number. Reduced GABAergic inhibitory transmission was observed only in mature DG neurons. Differential impairments in mature DG cells and adult-born new neurons may have implications for behavioral deficits associated with maternal immune activation.


Subject(s)
Cognition/physiology , Dentate Gyrus/immunology , Interferon Inducers/pharmacology , Motor Activity/immunology , Neurons/immunology , Poly I-C/pharmacology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Prepulse Inhibition/immunology , Animals , Cognition/drug effects , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/immunology , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Neural Inhibition/drug effects , Neural Inhibition/immunology , Neurogenesis/drug effects , Neurogenesis/immunology , Neurons/drug effects , Patch-Clamp Techniques , Pregnancy , Pregnancy Complications, Infectious/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Prepulse Inhibition/drug effects , Schizophrenia/immunology , Schizophrenia/physiopathology , Sensory Gating/drug effects , Sensory Gating/immunology
8.
Learn Mem ; 21(2): 119-26, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24443745

ABSTRACT

Normal aging can result in a decline of memory and muscle function. Exercise may prevent or delay these changes. However, aging-associated frailty can preclude physical activity. In young sedentary animals, pharmacological activation of AMP-activated protein kinase (AMPK), a transcriptional regulator important for muscle physiology, enhanced spatial memory function, and endurance. In the present study we investigated effects of AMPK agonist 5-aminoimidazole-4-carboxamide riboside (AICAR) on memory and motor function in young (5- to 7-wk-old) and aged (23-mo-old) female C57Bl/6 mice, and in young (4- to 6-wk-old) transgenic mice with muscle-specific mutated AMPK α2-subunit (AMPK-DN). Mice were injected with AICAR (500 mg/kg) for 3-14 d. Two weeks thereafter animals were tested in the Morris water maze, rotarod, and open field. Improved water maze performance and motor function were observed, albeit at longer duration of administration, in aged (14-d AICAR) than in young (3-d AICAR) mice. In the AMPK-DN mice, the compound did not enhance behavior, providing support for a muscle-mediated mechanism. In addition, microarray analysis of muscle and hippocampal tissue derived from aged mice treated with AICAR revealed changes in gene expression in both tissues, which correlated with behavioral effects in a dose-dependent manner. Pronounced up-regulation of mitochondrial genes in muscle was observed. In the hippocampus, genes relevant to neuronal development and plasticity were enriched. Altogether, endurance-related factors may mediate both muscle and brain health in aging, and could play a role in new therapeutic interventions.


Subject(s)
Aging/drug effects , Aminoimidazole Carboxamide/analogs & derivatives , Central Nervous System Agents/pharmacology , Memory/drug effects , Psychomotor Performance/drug effects , Ribonucleosides/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Aging/physiology , Aminoimidazole Carboxamide/pharmacology , Animals , Dose-Response Relationship, Drug , Female , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Space Perception/drug effects , Time Factors
9.
Prog Neurobiol ; 233: 102568, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216113

ABSTRACT

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.


Subject(s)
Cognitive Dysfunction , Gene Expression Regulation , Animals , Humans , Mice , Amino Acid Sequence , Neurogenesis/genetics , Neuronal Plasticity/genetics , Proteins/genetics , Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 107(5): 2367-72, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20133882

ABSTRACT

Increasing evidence suggests that regular exercise improves brain health and promotes synaptic plasticity and hippocampal neurogenesis. Exercise improves learning, but specific mechanisms of information processing influenced by physical activity are unknown. Here, we report that voluntary running enhanced the ability of adult (3 months old) male C57BL/6 mice to discriminate between the locations of two adjacent identical stimuli. Improved spatial pattern separation in adult runners was tightly correlated with increased neurogenesis. In contrast, very aged (22 months old) mice had impaired spatial discrimination and low basal cell genesis that was refractory to running. These findings suggest that the addition of newly born neurons may bolster dentate gyrus-mediated encoding of fine spatial distinctions.


Subject(s)
Discrimination Learning/physiology , Motor Activity/physiology , Animals , Bromodeoxyuridine/metabolism , Cell Count , Dentate Gyrus/blood supply , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Dentate Gyrus/physiology , Male , Mice , Mice, Inbred C57BL , Neurogenesis , Running/physiology
11.
Prog Neurobiol ; 226: 102450, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37061022

ABSTRACT

Adult neurogenesis occurs in the dentate gyrus (DG) of the rodent hippocampus throughout life, producing new granule cells (GCs) that migrate from a stem cell niche called the subgranular zone (SGZ) into the adjacent granule cell layer (GCL). Seizures associated with temporal lobe epilepsy alter adult neurogenesis and promote the formation of hyperexcitable circuits. Stem cell therapies for treating intractable seizure disorders are based on the premise that transplantation of GABAergic interneurons will strengthen inhibitory connections within the hippocampus and reduce hyperexcitability. Grafts of medial ganglionic eminence (MGE)-derived fetal GABAergic progenitors into the DG of adult mice with pilocarpine-induced TLE have been shown to suppress spontaneous recurrent seizures. In addition, the transplanted cells formed functional inhibitory synaptic connections with hippocampal neurons, including adult-born GCs. However, it is unknown whether MGE grafts change adult-born GC connectivity. To address this question, we compared the first-order monosynaptic inputs to adult-born GCs in TLE mice with or without MGE-derived interneuron grafts. Here we show that TLE increased excitatory inputs from endogenous hippocampal, entorhinal cortex, and medial septum/diagonal band neurons onto adult-born GCs. In contrast, in TLE mice with grafts, these excitatory inputs were reduced, coinciding with transplanted GABAergic interneuron innervation of adult-born GCs. These findings indicate that GABAergic interneuron transplantation into the dentate gyrus may prevent epilepsy-associated alterations in the connectivity of adult-born GCs.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Mice , Animals , Neurons/physiology , Hippocampus , Brain , Interneurons/physiology
12.
eNeuro ; 10(5)2023 05.
Article in English | MEDLINE | ID: mdl-37188520

ABSTRACT

Exercise may prevent or delay aging-related memory loss and neurodegeneration. In rodents, running increases the number of adult-born neurons in the dentate gyrus (DG) of the hippocampus, in association with improved synaptic plasticity and memory function. However, it is unclear whether adult-born neurons remain fully integrated into the hippocampal network during aging and whether long-term running affects their connectivity. To address this issue, we labeled proliferating DG neural progenitor cells with retrovirus expressing the avian TVA receptor in two-month-old sedentary and running male C57Bl/6 mice. More than six months later, we injected EnvA-pseudotyped rabies virus into the DG as a monosynaptic retrograde tracer, to selectively infect TVA expressing "old" new neurons. We identified and quantified the direct afferent inputs to these adult-born neurons within the hippocampus and (sub)cortical areas. Here, we show that long-term running substantially modifies the network of the neurons generated in young adult mice, upon middle-age. Exercise increases input from hippocampal interneurons onto "old" adult-born neurons, which may play a role in reducing aging-related hippocampal hyperexcitability. In addition, running prevents the loss of adult-born neuron innervation from perirhinal cortex, and increases input from subiculum and entorhinal cortex, brain areas that are essential for contextual and spatial memory. Thus, long-term running maintains the wiring of "old" new neurons, born during early adulthood, within a network that is important for memory function during aging.


Subject(s)
Neurogenesis , Running , Mice , Male , Animals , Neurogenesis/physiology , Neurons/physiology , Hippocampus/physiology , Spatial Memory/physiology , Running/physiology , Dentate Gyrus/physiology
13.
Res Sq ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909584

ABSTRACT

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex in animals that can alter the topology of both DNA and RNA. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impairments in cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal shorten-memory and learning, and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we built a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive impairment and psychiatric disorders.

14.
J Neuroinflammation ; 9: 106, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22642825

ABSTRACT

BACKGROUND: Neuroinflammation is associated with virtually all major neurodegenerative disorders, including Alzheimer's disease (AD). Although it remains unclear whether neuroinflammation is the driving force behind these disorders, compelling evidence implicates its role in exacerbating disease progression, with a key player being the potent proinflammatory cytokine TNF-α. Elevated TNF-α levels are commonly detected in the clinic and animal models of AD. METHODS: The potential benefits of a novel TNF-α-lowering agent, 3,6'-dithiothalidomide, were investigated in cellular and rodent models of neuroinflammation with a specific focus on AD. These included central and systemic inflammation induced by lipopolysaccharide (LPS) and Aß(1-42) challenge, and biochemical and behavioral assessment of 3xTg-AD mice following chronic 3,6'-dithiothaliodmide. RESULTS: 3,6'-Dithiothaliodmide lowered TNF-α, nitrite (an indicator of oxidative damage) and secreted amyloid precursor protein (sAPP) levels in LPS-activated macrophage-like cells (RAW 264.7 cells). This translated into reduced central and systemic TNF-α production in acute LPS-challenged rats, and to a reduction of neuroinflammatory markers and restoration of neuronal plasticity following chronic central challenge of LPS. In mice centrally challenged with A(ß1-42) peptide, prior systemic 3,6'-dithiothalidomide suppressed Aß-induced memory dysfunction, microglial activation and neuronal degeneration. Chronic 3,6'-dithiothalidomide administration to an elderly symptomatic cohort of 3xTg-AD mice reduced multiple hallmark features of AD, including phosphorylated tau protein, APP, Aß peptide and Aß-plaque number along with deficits in memory function to levels present in younger adult cognitively unimpaired 3xTg-AD mice. Levels of the synaptic proteins, SNAP25 and synaptophysin, were found to be elevated in older symptomatic drug-treated 3xTg-AD mice compared to vehicle-treated ones, indicative of a preservation of synaptic function during drug treatment. CONCLUSIONS: Our data suggest a strong beneficial effect of 3,6'-dithiothalidomide in the setting of neuroinflammation and AD, supporting a role for neuroinflammation and TNF-α in disease progression and their targeting as a means of clinical management.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Disease Models, Animal , Thalidomide/analogs & derivatives , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/physiology , Alzheimer Disease/physiopathology , Animals , Biomarkers/metabolism , Inflammation/drug therapy , Inflammation/pathology , Inflammation/physiopathology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Inbred F344 , Thalidomide/pharmacology , Thalidomide/therapeutic use
15.
Learn Mem ; 18(2): 103-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21245211

ABSTRACT

Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor δ agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and neurogenesis. Mice were injected with GW for 7 d or AICAR for 7 or 14 d. Two weeks thereafter mice were tested in the Morris water maze. AICAR (7 d) and GW improved spatial memory. Moreover, AICAR significantly, and GW modestly, elevated dentate gyrus neurogenesis. Thus, pharmacological activation of skeletal muscle may mediate cognitive effects.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Hippocampus/drug effects , Memory/drug effects , Neurogenesis/drug effects , Ribonucleotides/pharmacology , Thiazoles/pharmacology , Adenylate Kinase/metabolism , Aminoimidazole Carboxamide/pharmacology , Animals , Female , Hippocampus/physiology , Hypoglycemic Agents/pharmacology , Immunohistochemistry , Maze Learning/drug effects , Maze Learning/physiology , Memory/physiology , Mice , Mice, Inbred C57BL , Neurogenesis/physiology , PPAR delta/agonists , Physical Conditioning, Animal/physiology , Spatial Behavior/drug effects , Spatial Behavior/physiology
16.
Learn Mem ; 18(9): 605-9, 2011.
Article in English | MEDLINE | ID: mdl-21878528

ABSTRACT

Environmental enrichment (EE) increases dentate gyrus (DG) neurogenesis and brain-derived neurotrophic factor (BDNF) levels. However, running is considered an element of EE. To dissociate effects of physical activity and enrichment on hippocampal neurogenesis and BDNF levels, young female C57Bl/6 mice were housed under control, running, enrichment, or enrichment plus running conditions, and injected with bromodeoxyuridine. Cell genesis was assessed after 12 d and differentiation was analyzed 1 mo later. In addition, locomotor activity in the open field and hippocampal mature BDNF peptide levels were measured. Open-field adaptation was improved in all groups, compared to controls, but more so with running. New cell proliferation, survival, neuron number, and neurotrophin levels were enhanced only when running was accessible. We conclude that exercise is the critical factor mediating increased BDNF levels and adult hippocampal neurogenesis.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Environment , Neurogenesis/drug effects , Neurons/drug effects , Running/physiology , Animals , Behavior, Animal , Bromodeoxyuridine/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Exploratory Behavior/drug effects , Female , Mice , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , Neurogenesis/physiology , Neurons/physiology
17.
Ageing Res Rev ; 75: 101559, 2022 03.
Article in English | MEDLINE | ID: mdl-34999248

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/prevention & control , Animals , Cognition , Exercise/psychology , Humans , Neuronal Plasticity , Risk Factors
18.
Nat Rev Endocrinol ; 18(5): 273-289, 2022 05.
Article in English | MEDLINE | ID: mdl-35304603

ABSTRACT

The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.


Subject(s)
Diabetes Mellitus, Type 2 , Adipokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Exercise/physiology , Humans , Muscle, Skeletal/metabolism , Obesity/metabolism
19.
Brain Plast ; 8(2): 153-168, 2022.
Article in English | MEDLINE | ID: mdl-36721393

ABSTRACT

An inaugural workshop supported by "The Leo and Anne Albert Charitable Trust," was held October 4-7, 2019 in Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases. In particular, research topics included the links between cardiorespiratory fitness, the cerebrovasculature, energy metabolism, peripheral organs, and cognitive function, which are all highly relevant to understanding the effects of acute and chronic exercise on the brain. The Albert Trust workshop participants addressed these and related topics, as well as how other lifestyle interventions, such as diet, affect age-related cognitive decline associated with Alzheimer's and other neurodegenerative diseases. This report provides a synopsis of the presentations and discussions by the participants, and a delineation of the next steps towards advancing our understanding of the effects of exercise on the aging brain.

20.
Retrovirology ; 8: 51, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21702950

ABSTRACT

BACKGROUND: The process of HIV-1 genomic RNA (gRNA) encapsidation is governed by a number of viral encoded components, most notably the Gag protein and gRNA cis elements in the canonical packaging signal (ψ). Also implicated in encapsidation are cis determinants in the R, U5, and PBS (primer binding site) from the 5' untranslated region (UTR). Although conventionally associated with nuclear export of HIV-1 RNA, there is a burgeoning role for the Rev/RRE in the encapsidation process. Pleiotropic effects exhibited by these cis and trans viral components may confound the ability to examine their independent, and combined, impact on encapsidation of RNA into HIV-1 viral particles in their innate viral context. We systematically reconstructed the HIV-1 packaging system in the context of a heterologous murine leukemia virus (MLV) vector RNA to elucidate a mechanism in which the Rev/RRE system is central to achieving efficient and specific encapsidation into HIV-1 viral particles. RESULTS: We show for the first time that the Rev/RRE system can augment RNA encapsidation independent of all cis elements from the 5' UTR (R, U5, PBS, and ψ). Incorporation of all the 5' UTR cis elements did not enhance RNA encapsidation in the absence of the Rev/RRE system. In fact, we demonstrate that the Rev/RRE system is required for specific and efficient encapsidation commonly associated with the canonical packaging signal. The mechanism of Rev/RRE-mediated encapsidation is not a general phenomenon, since the combination of the Rev/RRE system and 5' UTR cis elements did not enhance encapsidation into MLV-derived viral particles. Lastly, we show that heterologous MLV RNAs conform to transduction properties commonly associated with HIV-1 viral particles, including in vivo transduction of non-dividing cells (i.e. mouse neurons); however, the cDNA forms are episomes predominantly in the 1-LTR circle form. CONCLUSIONS: Premised on encapsidation of a heterologous RNA into HIV-1 viral particles, our findings define a functional HIV-1 packaging system as comprising the 5' UTR cis elements, Gag, and the Rev/RRE system, in which the Rev/RRE system is required to make the RNA amenable to the ensuing interaction between Gag and the canonical packaging signal for subsequent encapsidation.


Subject(s)
5' Untranslated Regions , HIV-1/physiology , RNA, Viral/metabolism , Virus Assembly , rev Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cell Line , Female , Genetic Vectors , Humans , Leukemia Virus, Murine/genetics , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL