Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Leukoc Biol ; 111(4): 771-791, 2022 04.
Article in English | MEDLINE | ID: mdl-34494308

ABSTRACT

Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that ß2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited ß2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for ß2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of ß2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in ß2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects ß2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.


Subject(s)
CD18 Antigens , Neutrophils , CD18 Antigens/metabolism , Cell Adhesion , N-Formylmethionine Leucyl-Phenylalanine , Neutrophil Infiltration
2.
Cells ; 11(9)2022 05 03.
Article in English | MEDLINE | ID: mdl-35563841

ABSTRACT

The use of cell-based reporter systems has provided valuable insights into the molecular mechanisms of integrin activation. However, current models have significant drawbacks because their artificially expressed integrins cannot be regulated by either physiological stimuli or endogenous signaling pathways. Here, we report the generation of a Hoxb8 cell line expressing human ß2 integrin that functionally replaced the deleted mouse ortholog. Hoxb8 cells are murine hematopoietic progenitor cells that can be efficiently differentiated into neutrophils and macrophages resembling their primary counterparts. Importantly, these cells can be stimulated by physiological stimuli triggering classical integrin inside-out signaling pathways, ultimately leading to ß2 integrin conformational changes that can be recorded by the conformation-specific antibodies KIM127 and mAb24. Moreover, these cells can be efficiently manipulated via the CRISPR/Cas9 technique or retroviral vector systems. Deletion of the key integrin regulators talin1 and kindlin3 or expression of ß2 integrins with mutations in their binding sites abolished both integrin extension and full activation regardless of whether only one or both activators no longer bind to the integrin. Moreover, humanized ß2 integrin Hoxb8 cells represent a valuable new model for rapidly testing the role of putative integrin regulators in controlling ß2 integrin activity in a physiological context.


Subject(s)
CD18 Antigens , Integrins , Animals , CD18 Antigens/metabolism , Homeodomain Proteins/metabolism , Integrins/metabolism , Mice , Neutrophils/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL