Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279354

ABSTRACT

Studying the initial molecular mechanisms of the pathogenesis of Parkinson's disease (PD), primarily in the nigrostriatal dopaminergic system, is one of the priorities in neurology. Of particular interest is elucidating these mechanisms in the preclinical stage of PD, which lasts decades before diagnosis and is therefore not available for study in patients. Therefore, our main goal was to study the initial molecular mechanisms of the pathogenesis of PD in the striatum, the key center for dopamine regulation in motor function, in a mouse model of the earliest preclinical stage of PD, from 1 to 24 h after the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was shown that the content of tyrosine hydroxylase (TH), the first enzyme in dopamine synthesis, does not change within 6 h after the administration of MPTP, but decreases after 24 h. In turn, TH activity increases after 1 h, decreases after 3 h, remains at the control level after 6 h, and decreases 24 h after the administration of MPTP. The concentration of dopamine in the striatum gradually decreases after MPTP administration, despite a decrease in its degradation. The identified initial molecular mechanisms of PD pathogenesis are considered as potential targets for the development of preventive neuroprotective treatment.


Subject(s)
Neurotoxicity Syndromes , Parkinson Disease , Animals , Mice , Humans , Dopamine/metabolism , Parkinson Disease/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Substantia Nigra/metabolism , Disease Models, Animal , Corpus Striatum/metabolism , Neurotoxicity Syndromes/pathology , Tyrosine 3-Monooxygenase/metabolism , Mice, Inbred C57BL
2.
J Neurochem ; 164(2): 121-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36184945

ABSTRACT

Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.


Subject(s)
Parkinson Disease , Mice , Animals , Humans , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopamine , Disease Models, Animal , Hyperkinesis , Mice, Inbred C57BL
3.
Pharmacol Res ; 193: 106779, 2023 07.
Article in English | MEDLINE | ID: mdl-37121496

ABSTRACT

Oxidative disruption of dopaminergic neurons is regarded as a crucial pathogenesis in Parkinson's disease (PD), eventually causing neurodegenerative progression. (-)-Clausenamide (Clau) is an alkaloid isolated from plant Clausena lansium (Lour.), which is well-known as a scavenger of lipid peroxide products and exhibiting neuroprotective activities both in vivo and in vitro, yet with the in-depth molecular mechanism unrevealed. In this study, we evaluated the protective effects and mechanisms of Clau on dopaminergic neuron. Our results showed that Clau directly interacted with the Ser663 of ALOX5, the PKCα-phosphorylation site, and thus prevented the nuclear translocation of ALOX5, which was essential for catalyzing the production of toxic lipids 5-HETE. LC-MS/MS-based phospholipidomics analysis demonstrated that the oxidized membrane lipids were involved in triggering ferroptotic death in dopaminergic neurons. Furthermore, the inhibition of ALOX5 was found to significantly improving behavioral defects in PD mouse model, which was confirmed associated with the effects of attenuating the accumulation of lipid peroxides and neuronal damages. Collectively, our findings provide an attractive strategy for PD therapy by targeting ALOX5 and preventing ferroptosis in dopaminergic neurons.


Subject(s)
Ferroptosis , Parkinson Disease , Animals , Mice , Dopaminergic Neurons , Chromatography, Liquid , Tandem Mass Spectrometry
4.
Int J Neurosci ; 133(3): 278-289, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33781148

ABSTRACT

PURPOSE OF THE STUDY: granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor existing in neutrophils, glial cells and neurons. Increasing researches discovered that G-CSF improved cell survival in neurodegenerative diseases by its anti-inflammatory effect. However, the effect of G-CSF in suppressing inflammation in Parkinson's disease (PD) remains unclear. Thus, the purpose of this study is to explored the anti-inflammatory effect of G-CSF in mouse model of PD. MATERIALS AND METHODS: G-CSF was administrated in the PD model induced by MPTP. Subsequently, the protein of tyrosine hydroxylase (TH), ionized calcium-binding adaptor molecule 1 (Iba-1) and the inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in the midbrain were examined. In addition, the phosphorylated mitogen-activated protein kinases (MAPK) including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 MAPK in the midbrain were investigated. RESULTS: Compared with the MPTP group, the protein of TH in the midbrain was increased, while the Iba-1 and the inflammatory factors were decreased. In addition, the expression of phosphorylated JNK (p-JNK) in the midbrain of the MPTP + G-CSF group was decreased, while the phosphorylated ERK (p-ERK) levels were elevated. CONCLUSIONS: These findings emphasize that G-CSF inhibited the degradation of DA neurons. The protective effect is associated with the reduction of the inflammatory factors caused by the inhibition of the microglial activation. Moreover, G-CSF may decrease the inflammatory factors through the decrease of P-JNK and the increase of P-ERK.


Subject(s)
Parkinson Disease , Tumor Necrosis Factor-alpha , Mice , Animals , Parkinson Disease/drug therapy , Interleukin-1beta , Dopaminergic Neurons , Granulocyte Colony-Stimulating Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
5.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003434

ABSTRACT

The mammalian striatum is known to contain non-dopaminergic neurons that express dopamine (DA)-synthesizing enzymes and produce DA, responsible for the regulation of motor function. This study assessed the expression of DA-synthesizing enzymes in striatal neurons and their role in DA synthesis in transgenic mice expressing the green fluorescent protein (GFP) gene under the tyrosine hydroxylase (TH) gene promoter in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). We showed that, in Parkinsonian animals, the number of neurons expressing the TH gene increased by 1.9 times compared with the control (0.9% NaCl), which indicates a compensatory response to the DAergic denervation of the striatum. This assumption is supported by a 2.5-fold increase in the expression of genes for TH and transcription factor Nurr1 and a 1.45-fold increase in the expression of the large amino acid transporter 1 gene. It is noteworthy that, in Parkinsonian mice, in contrast to the controls, DA-synthesizing enzymes were found not only in nerve fibers but also in neuronal cell bodies. Indeed, TH or TH and aromatic L-amino acid decarboxylase (AADC) were detected in GFP-positive neurons, and AADC was detected in GFP-negative neurons. These neurons were shown to synthesize DA, and this synthesis is compensatorily increased in Parkinsonian mice. The above data open the prospect of improving the treatment of PD by maintaining DA homeostasis in the striatum.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Mice, Transgenic , Dopamine/metabolism , Neurons/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Mammals/metabolism
6.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373089

ABSTRACT

Trolox is a potent antioxidant and a water-soluble analog of vitamin E. It has been used in scientific studies to examine oxidative stress and its impact on biological systems. Trolox has been shown to have a neuroprotective effect against ischemia and IL-1ß-mediated neurodegeneration. In this study, we investigated the potential protective mechanisms of Trolox against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of trolox against neuroinflammation, the oxidative stress mediated by MPTP in the Parkinson's disease (PD) mouse model (wild-type mice (C57BL/6N), eight weeks old, average body weight 25-30 g). Our study showed that MPTP increased the expression of α-synuclein, decreased tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels in the striatum and substantia nigra pars compacta (SNpc), and impaired motor function. However, Trolox treatment significantly reversed these PD-like pathologies. Furthermore, Trolox treatment reduced oxidative stress by increasing the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Lastly, Trolox treatment inhibited the activated astrocytes (GFAP) and microglia (Iba-1), also reducing phosphorylated nuclear factor-κB, (p-NF-κB) and tumor necrosis factor-alpha (TNF-α) in the PD mouse brain. Overall, our study demonstrated that Trolox may exert neuroprotection on dopaminergic neurons against MPTP-induced oxidative stress, neuroinflammation, motor dysfunction, and neurodegeneration.


Subject(s)
Motor Disorders , Neuroprotective Agents , Parkinson Disease , Animals , Mice , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Neuroinflammatory Diseases , Vitamin E/pharmacology , Motor Disorders/metabolism , Substantia Nigra/metabolism , Mice, Inbred C57BL , Tyrosine 3-Monooxygenase/metabolism , Dopaminergic Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Oxidative Stress , Disease Models, Animal
7.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569538

ABSTRACT

Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-ß-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.


Subject(s)
MPTP Poisoning , Parkinson Disease , Parkinsonian Disorders , Animals , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Disease Models, Animal , Gene Expression Profiling , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mice, Inbred C57BL , MPTP Poisoning/pathology , Parkinson Disease/pathology , Parkinsonian Disorders/pathology , Phosphatidylinositol 3-Kinases/metabolism , Substantia Nigra/metabolism
8.
Molecules ; 28(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37175230

ABSTRACT

This research investigated the effects of eleutheroside E (EE) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease cell model and its mechanism. Methods: To create a cell model of Parkinson's disease, MPTP (2500 µmol/L) was administered to rat adrenal pheochromocytoma cells (PC-12) to produce an MPTP group. Selegiline (50 µmol/L) and MPTP had been administered to the positive group beforehand. The eleutheroside E group was divided into low-, medium-, and high-concentration groups, in which the cells were pretreated with eleutheroside E at concentrations of 100 µmol/L, 300 µmol/L, and 500 µmol/L. Next, MPTP was added to the cells separately. The CCK-8 method was used to measure the cell survival rate. Apart from the CCK-8 method, mitochondrial membrane potential detection, cell reactive oxygen species (ROS) detection, and other methods were also adopted to verify the effect of low, medium, and high concentrations of eleutheroside E on the MPTP-induced cell model. Western blot analysis was used to detect changes in the expression of intracellular proteins CytC, Nrf2, and NQO1 to clarify the mechanism. The results are as follows. Compared with the MPTP group, the survival rates of cells at low, medium, and high concentrations of eleutheroside E all increased. The mitochondrial membrane potential at medium and high concentrations of eleutheroside E increased. The ROS levels at medium and high concentrations of eleutheroside E decreased. Moreover, the apoptosis rate decreased and the expression levels of the intracellular proteins CytC, Nrf2, and NQO1 were upregulated. Conclusion: Eleutheroside E can improve the MPTP-induced apoptosis of PC-12 cells by increasing the mitochondrial membrane potential and reducing the level of intracellular reactive oxygen species (ROS). Moreover, the apoptosis of cells is regulated by the expression of CytC, Nrf2, and NQO1 proteins.


Subject(s)
Parkinson Disease , Rats , Animals , Mice , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Disease Models, Animal
9.
Nutr Neurosci ; 25(7): 1374-1391, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33345721

ABSTRACT

OBJECTIVE: Parkinson's disease (PD) is a progressive motor disease of unknown etiology. Although neuroprotective ability of endogenous bile acid, tauroursodeoxycholic acid (TUDCA), shown in various diseases, including an acute model of PD,the potential therapeutic role of TUDCA in progressive models of PD that exhibit all aspects of PD has not been elucidated. In the present study, mice were assigned to one of four treatment groups: (1) Probenecid (PROB); (2) TUDCA, (3) MPTP + PROB (MPTPp); and (3) TUDCA + MPTPp. Methods: Markers for dopaminergic function, neuroinflammation, oxidative stress and autophagy were assessed using high performance liquid chromatography (HPLC), immunohistochemistry (IHC) and western blot (WB) methods. Locomotion was measured before and after treatments. Results: MPTPp decreased the expression of dopamine transporters (DAT) and tyrosine hydroxylase (TH), indicating dopaminergic damage, and induced microglial and astroglial activation as demonstrated by IHC analysis. MPTPp also decreased DA and its metabolites as demonstrated by HPLC analysis. Further, MPTPp-induced protein oxidation; increased LAMP-1 expression indicated autophagy and the promotion of alpha-synuclein (α-SYN) aggregation. Discussion: Pretreatment with TUDCA protected against dopaminergic neuronal damage, prevented the microglial and astroglial activation, as well as the DA and DOPAC reductions caused by MPTPp. TUDCA by itself did not produce any significant change, with data similar to the negative control group. Pretreatment with TUDCA prevented protein oxidation and autophagy, in addition to inhibiting α-SYN aggregation. Although TUDCA pretreatment did not significantly affect locomotion, only acute treatment effects were measured, indicating more extensive assessments may be necessary to reveal potential therapeutic effects on behavior. Together, these results suggest that autophagy may be involved in the progression of PD and that TUDCA may attenuate these effects. The efficacy of TUDCA as a novel therapy in patients with PD clearly warrants further study.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons , Humans , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use
10.
Can J Physiol Pharmacol ; 100(7): 594-611, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35413210

ABSTRACT

1,2,3,4-tetrahydroisoquinoline (TIQ) is endogenously present in the human brain, and some of its derivatives are thought to contribute to the induction of Parkinson's disease (PD)-like signs in rodents and primates. In contrast, the endogenous TIQ derivative 1-methyl-TIQ (1-MeTIQ) is reported to be neuroprotective. In the present study, we compared the effects of artificially modified 1-MeTIQ derivatives (loading an N-propyl, N-propenyl, N-propargyl, or N-butynyl group) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like signs in mice. In a behavioral study, MPTP-induced bradykinesia was significantly decreased by all compounds. However, only 1-Me-N-propargyl-TIQ showed an inhibitory effect by blocking the MPTP-induced reduction in striatal dopamine content and the number of nigral tyrosine hydroxylase-positive cells. Western blot analysis showed that 1-Me-N-propargyl-TIQ and 1-Me-N-butynyl-TIQ potently prevented the MPTP-induced decrease in dopamine transporter expression, whereas 1-MeTIQ and 1-Me-N-propyl-TIQ did not. These results suggest that although loading an N-propargyl group on 1-MeTIQ clearly enhanced neuroprotective effects, other N-functional groups showed distinct pharmacological properties characteristic of their functional groups. Thus, the number of bonds and length of the N-functional group may contribute to the observed differences in effect.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinsonian Disorders , Tetrahydroisoquinolines , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Humans , MPTP Poisoning/drug therapy , MPTP Poisoning/prevention & control , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/prevention & control
11.
Drug Chem Toxicol ; 45(2): 947-954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32693643

ABSTRACT

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 µM); MPTP + Low Dose 3-Pyridinylboronic acid (50 µM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 µM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.


Subject(s)
MPTP Poisoning , Zebrafish , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Boronic Acids/metabolism , Boronic Acids/therapeutic use , Disease Models, Animal , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Pyridines , Pyrrolidines/metabolism , Pyrrolidines/therapeutic use , Zebrafish/metabolism
12.
Neuromodulation ; 25(6): 804-816, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34309115

ABSTRACT

OBJECTIVES: To characterize and compare the stability of cortical potentials evoked by deep brain stimulation (DBS) of the subthalamic nucleus (STN) across the naïve, parkinsonian, and pharmacologically treated parkinsonian states. To advance cortical potentials as possible biomarkers for DBS programming. MATERIALS AND METHODS: Serial electrocorticographic (ECoG) recordings were made more than nine months from a single non-human primate instrumented with bilateral ECoG grids spanning anterior parietal to prefrontal cortex. Cortical evoked potentials (CEPs) were generated through time-lock averaging of the ECoG recordings to DBS pulses delivered unilaterally in the STN region using a chronically implanted, six-contact, scaled DBS lead. Recordings were made across the naïve followed by mild and moderate parkinsonian conditions achieved by staged injections of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin. In addition to characterizing the spatial distribution and stability of the response within each state, changes in the amplitude and latency of CEP components as well as in the frequency content were examined in relation to parkinsonian severity and dopamine replacement. RESULTS: In the naïve state, the STN DBS CEP presented as a multiphase response maximal over M1 cortex, with components attributable to physiological activity distinguishable from stimulus artifact as early as 0.45-0.75 msec poststimulation. When delivered using therapeutically effective parameters in the parkinsonian state, the CEP was highly stable across multiple recording sessions within each behavioral state. Across states, significant differences were present with respect to both the latency and amplitude of individual response components, with greater differences present for longer-latency components (all p < 0.05). Power spectral density analysis revealed a high-beta peak within the evoked response, with significant changes in power between disease states across multiple frequency bands. CONCLUSIONS: Our findings underscore the spatiotemporal specificity and relative stability of the DBS-CEP associated with different disease states and with therapeutic benefit. DBS-CEP may be a viable biomarker for therapeutic programming.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Animals , Deep Brain Stimulation/methods , Evoked Potentials/physiology , Subthalamic Nucleus/physiology
13.
Int J Mol Sci ; 23(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36142685

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells' absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell-cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain.


Subject(s)
MPTP Poisoning , Neurodegenerative Diseases , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Disease Models, Animal , Endothelial Cells/metabolism , MPTP Poisoning/genetics , MPTP Poisoning/metabolism , Mice , Mice, Inbred C57BL , Neurotoxins/adverse effects , Parkinson Disease/genetics , Parkinson Disease/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics
14.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614126

ABSTRACT

The fight against neurodegenerative diseases, including Parkinson's disease (PD), is among the global challenges of the 21st century. The low efficiency of therapy is due to the late diagnosis and treatment of PD, which take place when there is already significant degradation of the nigrostriatal dopaminergic system, a key link in the regulation of motor function. We have developed a subchronic mouse model of PD by repeatedly administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at gradually increasing doses with a 24 h interval between injections, a period comparable to the time of MPTP metabolism and elimination from the body. This model reproduces the main hallmarks of PD: progressive degeneration of dopaminergic neurons; the appearance of motor disorders with a 70-80% decrease in the level of dopamine in the striatum; an increase in dopamine turnover in the striatum to compensate for dopamine deficiency. When comparing the degradation of the nigrostriatal dopaminergic system and motor disorders in mice in the acute and subchronic models of PD, it has turned out that the resistance of dopaminergic neurons to MPTP increases with its repeated administration. Our subchronic model of PD opens up broad prospects for studying the molecular mechanisms of PD pathogenesis and developing technologies for early diagnosis and preventive treatment.


Subject(s)
Dopamine , Parkinson Disease , Animals , Mice , Dopamine/metabolism , Parkinson Disease/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Substantia Nigra/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , Neuronal Plasticity , Mice, Inbred C57BL
15.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055183

ABSTRACT

Parkinson's disease (PD) is a progressive movement disorder caused by nigrostriatal neurodegeneration. Since chronically activated neuroinflammation accelerates neurodegeneration in PD, we considered that modulating chronic neuroinflammatory response might provide a novel therapeutic approach. Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine protein kinase with two isoforms, GSK-3α and GSK-3ß, and GSK-3ß plays crucial roles in inflammatory response, which include microglial migration and peripheral immune cell activation. GSK-3ß inhibitory peptide (IAGIP) is specifically activated by activated inhibitory kappa B kinase (IKK), and its therapeutic effects have been demonstrated in a mouse model of colitis. Here, we investigated whether the anti-inflammatory effects of IAGIP prevent neurodegeneration in the rodent model of PD. IAGIP significantly reduced MPP+-induced astrocyte activation and inflammatory response in primary astrocytes without affecting the phosphorylations of ERK or JNK. In addition, IAGIP inhibited LPS-induced cell migration and p65 activation in BV-2 microglial cells. In vivo study using an MPTP-induced mouse model of PD revealed that intravenous IAGIP effectively prevented motor dysfunction and nigrostriatal neurodegeneration. Our findings suggest that IAGIP has a curative potential in PD models and could offer new therapeutic possibilities for targeting PD.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , I-kappa B Kinase/metabolism , Parkinson Disease/drug therapy , Peptides/administration & dosage , Animals , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , HCT116 Cells , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Parkinson Disease/pathology , Peptides/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/pharmacology
16.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364248

ABSTRACT

Accumulating evidence has shown that Parkinson's disease (PD) is a systemic disease other than a mere central nervous system (CNS) disorder. One of the most important peripheral symptoms is gastrointestinal dysfunction. The enteric nervous system (ENS) is regarded as an essential gateway to the environment. The discovery of the prion-like behavior of α-synuclein makes it possible for the neurodegenerative process to start in the ENS and spread via the gut-brain axis to the CNS. We first confirmed that synucleinopathies existed in the stomachs of chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mice, as indicated by the significant increase in abnormal aggregated and nitrated α-synuclein in the TH-positive neurons and enteric glial cells (EGCs) of the gastric myenteric plexus. Next, we attempted to clarify the mechanisms in single MPTP-injected mice. The stomach naturally possesses high monoamine oxidase-B (MAO-B) activity and low superoxide dismutase (SOD) activity, making the stomach susceptible to MPTP-induced oxidative stress, as indicated by the significant increase in reactive oxygen species (ROS) in the stomach and elevated 4-hydroxynonenal (4-HNE) in the EGCs after MPTP exposure for 3 h. Additionally, stomach synucleinopathies appear before those of the nigrostriatal system, as determined by Western blotting 12 h after MPTP injection. Notably, nitrated α-synuclein was considerably increased in the EGCs after 3 h and 12 h of MPTP exposure. Taken together, our work demonstrated that the EGCs could be new contributors to synucleinopathies in the stomach. The early-initiated synucleinopathies might further influence neighboring neurons in the myenteric plexus and the CNS. Our results offer a new experimental clue for interpreting the etiology of PD.


Subject(s)
MPTP Poisoning , Parkinson Disease , Parkinsonian Disorders , Synucleinopathies , Mice , Animals , alpha-Synuclein , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Neuroglia , Stomach
17.
Eur J Neurosci ; 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33905578

ABSTRACT

Dexmedetomidine (Dex), an adrenergic α2 receptor agonist, is commonly used in deep-brain stimulation surgery for Parkinson's disease (PD). However, there is evidence that the use of anaesthetics may accelerate the progression of neurodegenerative diseases. The effect of Dex on PD remains unclear. Here, we cultured the all-trans-retinoicacid (ATRA) differentiated SH-SY5Y cells in vitro and then treated with MPP+ (1.5mM) with or without Dex (10nM) or Dex combined with Atipamezole (Ati,100nM, adrenergic α2 receptor inhibitor). The ratio of apoptotic cells, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS), cell cycle and apoptotic markers (Cleaved caspase-3, 9) were analysed by flow cytometry and immunofluorescence. We found that the levels of apoptotic ratio and cleaved caspase-3, 9 increased, ROS accumulated, and mitochondrial membrane potential decreased after MPP+treatment, while these changes were partially reversed by Dex. Dex also prevented MPP+ induced cell arrest by increasing G1 phase cells, decreasing S phase cells, and decreasing the expression of cyclinD1 and Cdk4. Moreover the effects of Dex were partially reversed by Ati. These findings reveal that Dex attenuated MPP+ -induced apoptosis of SH-SY5Y cells by preventing the loss of Δψm, reducing ROS, and regulating the cell cycle. Our findings indicated that Dex is more likely to be a potential drug for the treatment of PD.

18.
Brain Behav Immun ; 94: 410-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33662500

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease involving dopaminergic neuronal death in the substantia nigra (SN); recent studies have shown that interactions between gut and brain play a critical role in the pathogenesis of PD. In this study, the anti-inflammatory effect of Korean red ginseng (KRG) and the changes in gut microbiota were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Male nine-week-old C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 100 mg/kg of KRG, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Eight days after the final KRG administration, the pole and rotarod tests were performed and brain and colon samples of the mice were collected. Dopaminergic neuronal death, activation of microglia and astrocytes, α-synuclein and expressions of inflammatory cytokines and disruption of tight junction were evaluated. In addition, 16S ribosomal RNA gene sequencing of mouse fecal samples was performed to investigate microbiome changes. KRG treatment prevented MPTP-induced behavioral impairment, dopaminergic neuronal death, activation of microglia and astrocytes in the nigrostriatal pathway, disruption of tight junction and the increase in α-synuclein, interleukin-1ß and tumor necrosis factor-α expression in the colon. The 16S rRNA sequencing revealed that MPTP altered the number of bacterial species and their relative abundances, which were partially suppressed by KRG treatment. Especially, KRG suppressed the abundance of the inflammation-related phylum Verrucomicrobia and genera Ruminococcus and Akkermansia (especially Akkermansia muciniphila), and elevated the abundance of Eubacterium, which produces the anti-inflammatory substances. These findings suggest that KRG prevents MPTP-induced dopaminergic neuronal death, activation of microglia and astrocytes, and accumulation of α-synuclein in the SN, and the regulation of inflammation-related factors in the colon may influence the effect.


Subject(s)
Neurodegenerative Diseases , Panax , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Colon , Disease Models, Animal , Dopaminergic Neurons , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Pyrrolidines , RNA, Ribosomal, 16S , Substantia Nigra
19.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672606

ABSTRACT

Oxidative stress, mitochondrial dysfunction, and neuroinflammation are strongly associated with the pathogenesis of Parkinson's disease (PD), which suggests that anti-oxidative and anti-inflammatory compounds might provide an alternative treatment for PD. Here, we evaluated the neuroprotective effects of evernic aid (EA), which was screened from a lichen library provided by the Korean Lichen Research Institute at Sunchon National University. EA is a secondary metabolite generated by lichens, including Ramalina, Evernia, and Hypogymnia, and several studies have described its anticancer, antifungal, and antimicrobial effects. However, the neuroprotective effects of EA have not been studied. We found that EA protected primary cultured neurons against 1-methyl-4-phenylpyridium (MPP+)-induced cell death, mitochondrial dysfunction, and oxidative stress, and effectively reduced MPP+-induced astroglial activation by inhibiting the NF-κB pathway. In vivo, EA ameliorated MPTP-induced motor dysfunction, dopaminergic neuronal loss, and neuroinflammation in the nigrostriatal pathway in C57BL/6 mice. Taken together, our findings demonstrate that EA has neuroprotective and anti-inflammatory effects in PD models and suggest that EA is a potential therapeutic candidate for PD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hydroxybenzoates/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Cells, Cultured , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Drug Evaluation, Preclinical , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Lichens/chemistry , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Motor Activity/drug effects , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Signal Transduction/drug effects
20.
Am J Physiol Endocrinol Metab ; 319(4): E734-E743, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32865008

ABSTRACT

Autophagy dysfunctions are involved in the pathogenesis of Parkinson's disease (PD). In the present study, we aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) in the inhibitory effect of insulin-like growth factor-1 (IGF-1) against excessive autophagy in PD animal and cellular models. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment significantly induced mouse movement disorder and decreased the protein level of tyrosine hydroxylase (TH) in the substantia nigra (SN) and dopamine (DA) content in striatum. Along with the dopamine neuron injury, we observed significant upregulations of microtubule-associated light chain-3 II (LC3-II) and α-synuclein as well as a downregulation of P62 in MPTP-treated mice. These changes could be restored by IGF-1 pretreatment. Cotreatment with IGF-1R antagonist JB-1 or GPER antagonist G15 could block the neuroprotective effects of IGF-1. 1-Methy-4-phenylpyridinium (MPP+) treatment could also excessively activate autophagy along with the reduction of cell viability in SH-SY5Y cells. IGF-1 could inhibit the neurotoxicity through promoting the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which could also be antagonized by JB-1 or G15. These data suggest that IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER.


Subject(s)
Autophagy/drug effects , Dopaminergic Neurons/drug effects , Insulin-Like Growth Factor I/pharmacology , MPTP Poisoning/prevention & control , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Animals , Humans , MPTP Poisoning/psychology , Male , Mice , Mice, Inbred C57BL , Neostriatum/drug effects , Neostriatum/metabolism , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Postural Balance/drug effects , Receptor, IGF Type 1 , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL