Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
J Allergy Clin Immunol ; 154(3): 592-608, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705258

ABSTRACT

BACKGROUND: Epithelial remodeling is a prominent feature of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP), and infiltration of M2 macrophages plays a pivotal role in the pathogenesis of eCRSwNP, but the underlying mechanisms remain undefined. OBJECTIVE: We sought to investigate the role of ALOX15+ M2 macrophages in the epithelial remodeling of eCRSwNP. METHODS: Digital spatial transcriptomics and single-cell sequencing analyses were used to characterize the epithelial remodeling and cellular infiltrate in eCRSwNP. Hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining were used to explore the relationship between ALOX15+ M2 (CD68+CD163+) macrophages and epithelial remodeling. A coculture system of primary human nasal epithelial cells (hNECs) and the macrophage cell line THP-1 was used to determine the underlying mechanisms. RESULTS: Spatial transcriptomics analysis showed the upregulation of epithelial remodeling-related genes, such as Vimentin and matrix metalloproteinase 10, and enrichment of epithelial-mesenchymal transition (EMT)-related pathways, in the epithelial areas in eCRSwNP, with more abundance of epithelial basal, goblet, and glandular cells. Single-cell analysis identified that ALOX15+, rather than ALOX15-, M2 macrophages were specifically highly expressed in eCRSwNP. CRSwNP with high ALOX15+ M2THP-1-IL-4+IL-13 macrophages had more obvious epithelial remodeling features and increased genes associated with epithelial remodeling and integrity of epithelial morphology versus that with low ALOX15+ M2THP-1-IL-4+IL-13 macrophages. IL-4/IL-13-polarized M2THP-1-IL-4+IL-13 macrophages upregulated expressions of EMT-related genes in hNECs, including Vimentin, TWIST1, Snail, and ZEB1. ALOX15 inhibition in M2THP-1-IL-4+IL-13 macrophages resulted in reduction of the EMT-related transcripts in hNECs. Blocking chemokine (C-C motif) ligand 13 signaling inhibited M2THP-1-IL-4+IL-13 macrophage-induced EMT alteration in hNECs. CONCLUSIONS: ALOX15+ M2 macrophages are specifically increased in eCRSwNP and may contribute to the pathogenesis of epithelial remodeling via production of chemokine (C-C motif) ligand 13.


Subject(s)
Arachidonate 15-Lipoxygenase , Macrophages , Nasal Mucosa , Nasal Polyps , Rhinitis , Sinusitis , Humans , Nasal Polyps/immunology , Nasal Polyps/pathology , Sinusitis/immunology , Sinusitis/pathology , Macrophages/immunology , Macrophages/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Rhinitis/immunology , Rhinitis/pathology , Chronic Disease , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Male , Female , Epithelial Cells/immunology , Epithelial Cells/metabolism , Middle Aged , Adult , Epithelial-Mesenchymal Transition/immunology , Eosinophilia/immunology , Eosinophilia/pathology , Rhinosinusitis
2.
Clin Exp Allergy ; 54(6): 412-424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639267

ABSTRACT

BACKGROUND: SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS: SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS: SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS: SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.


Subject(s)
Epithelial Cells , Nasal Polyps , Rhinitis , STAT6 Transcription Factor , Signal Transduction , Sinusitis , Humans , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , Nasal Polyps/metabolism , Nasal Polyps/pathology , Nasal Polyps/immunology , Sinusitis/metabolism , Sinusitis/pathology , Sinusitis/immunology , Rhinitis/metabolism , Rhinitis/pathology , Chronic Disease , Epithelial Cells/metabolism , Plasminogen Activator Inhibitor 2/metabolism , Plasminogen Activator Inhibitor 2/genetics , Female , Male , Chemokine CCL26/metabolism , Chemokine CCL26/genetics , Adult , Middle Aged , Eosinophilia/metabolism , Eosinophilia/pathology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Nasal Mucosa/immunology , Gene Expression Regulation , Rhinosinusitis
3.
Chemistry ; 30(53): e202402279, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39041705

ABSTRACT

Human 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that possesses an important role in (neuro)inflammatory diseases. The pocket of the enzyme plays the role of a chiral catalyst, and therefore chirality could be an important component for the design of effective enzyme inhibitors. To advance our knowledge on this concept, we developed a library of the identified chiral 15-LOX-1 inhibitors and applied cheminformatic tools. Our analysis highlighted specific structural elements, which we integrated them in small molecules, and employed them as "smart" tools to effectively navigate the chemical space of previously unexplored regions. To this purpose, we utilized the marine derived natural product phosphoeleganin (PE) among with a small library of synthetic fragment derivatives, including a certain degree of stereochemical diversity. Enzyme inhibition/kinetic and molecular modelling studies has been performed in order to characterize structurally novel PE-based inhibitors, which proved to present a different type of inhibition with low micromolar potency, according to their structural features. We demonstrate that different warheads work as anchor, and either guide specific stereochemistry, or causing a time-depended inhibition. Finally, we prove that the positioning of the chiral substituents or/and the favorable stereochemistry can be crucial, as it can lead from active to completely inactive compounds.


Subject(s)
Arachidonate 15-Lipoxygenase , Biological Products , Catalytic Domain , Lipoxygenase Inhibitors , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/chemistry , Humans , Biological Products/chemistry , Biological Products/pharmacology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship , Kinetics , Models, Molecular
4.
Prostaglandins Other Lipid Mediat ; 161: 106648, 2022 08.
Article in English | MEDLINE | ID: mdl-35577309

ABSTRACT

Maternal lipid metabolism status during pregnancy may have pivotal effects on a healthy pregnancy, the progression of labor, and childbirth. Based on evidence, changes in maternal lipid profile and metabolism is related to various alterations in fetal metabolic status, fat mass, birth weight and can result in serious maternal and fetal complications. 15-lipoxygenase accounts as a key enzyme in metabolizing polyunsaturated fatty acids that generate various inflammatory lipid metabolites. The possible involvement of 15- lipoxygenase and its metabolites in the inflammatory process, cell proliferation and death, and immune response has been postulated. The indicative role of the 15- lipoxygenase enzymatic pathway in the implantation process, stages of pregnancy, embryogenesis, organogenesis, progression of labor, pregnancy period, and pregnancy-associated complications is remarkable. Accordingly, this study will review the research conducted on the role of 15- lipoxygenase in different reproductive tissues, and its pathological role in pregnancy-related diseases to provide more insight regarding the emerging role of 15-lipoxygenase in normal pregnancy.


Subject(s)
Arachidonate 15-Lipoxygenase , Pregnancy Complications , Pregnancy , Animals , Arachidonate 15-Lipoxygenase/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Fetus , Humans , Lipid Metabolism , Pregnancy/metabolism , Pregnancy Complications/enzymology , Pregnancy Complications/metabolism
5.
Lipids Health Dis ; 20(1): 169, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34838055

ABSTRACT

15-lipoxygenase is one of the key enzymes for the metabolism of unsaturated fatty acids that its manipulation has been proposed recently as a new molecular target for regulating cancer cell growth. Aberrant expression of 15-lipoxygenase enzyme seems to play an indicative role in the pathology of different cancer types, tumor progression, metastasis, or apoptosis. Based on the fact that breast cancer is one of the most common cancers that imposes a burden of mortality in women also, on the other hand, evidence in experimental models and human studies indicate the emerging role of the 15-lipoxygenase pathway in breast cancer pathogenesis, we present a review of recent findings related to the role of 15- lipoxygenase enzyme and metabolites in breast cancer growth, apoptosis, metastasis, and invasion as well as their local and circulating expression pattern in patients with breast cancer. Our review supports the emerging role of 15- lipoxygenase in molecular and cellular processes regulating breast tumor cell fate with both positive and negative effects.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Breast Neoplasms/etiology , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Humans , Metabolic Networks and Pathways
6.
J Lipid Res ; 61(7): 1087-1103, 2020 07.
Article in English | MEDLINE | ID: mdl-32404334

ABSTRACT

The two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1. The oxidation at C14 of DHA by h12-LOX was expected, but the noncanonical reaction of h15-LOX-1 to make over 80% 7S,14S-diHDHA was larger than expected. Results of computer modeling suggested that the alcohol on C7 of 7S-HDHA hydrogen bonds with the backbone carbonyl of Ile399, forcing the hydrogen abstraction from C12 to oxygenate on C14 but not C17. This result raised questions regarding the synthesis of RvD5. Strikingly, we found that h15-LOX-2 oxygenates 7S-HDHA almost exclusively at C17, forming RvD5 with faster kinetics than does h15-LOX-1. The presence of h15-LOX-2 in neutrophils and macrophages suggests that it may have a greater role in biosynthesizing SPMs than previously thought. We also determined that the reactions of h5-LOX with 14(S)-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-DHA and 17(S)-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-DHA are kinetically slow compared with DHA, suggesting that these reactions may be minor biosynthetic routes in vivo. Additionally, we show that 7S,14S-diHDHA and RvD5 have anti-aggregation properties with platelets at low micromolar potencies, which could directly regulate clot resolution.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/biosynthesis , Blood Platelets/metabolism , Docosahexaenoic Acids/chemistry , Humans
7.
J Allergy Clin Immunol ; 144(5): 1228-1241.e9, 2019 11.
Article in English | MEDLINE | ID: mdl-31301373

ABSTRACT

BACKGROUND: 15-Lipoxygenase 1 (15LO1) is expressed in airway epithelial cells in patients with type 2-high asthma in association with eosinophilia. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also associated with type 2 inflammation and eosinophilia. CCL26/eotaxin 3 has been reported to be regulated by 15LO1 in lower airway epithelial cells. However, its relation to 15LO1 in patients with CRSwNP or mechanisms for its activation are unclear. OBJECTIVE: We sought to evaluate 15LO1 and CCL26 expression in nasal epithelial cells (NECs) from patients with CRSwNP and healthy control subjects (HCs) and determine whether 15LO1 regulates CCL26 in NECs through extracellular signal-regulated kinase (ERK) activation. METHODS: 15LO1, CCL26, and phosphorylated ERK were evaluated in NECs from patients with CRSwNP and HCs. 15LO1/CCL26 and CCL26/cytokeratin 5 were colocalized by means of immunofluorescence. IL-13-stimulated NECs were cultured at an air-liquid interface with or without 15-lipoxygenase 1 gene (ALOX15) Dicer-substrate short interfering RNAs (DsiRNA) transfection, a specific 15LO1 enzymatic inhibitor, and 2 ERK inhibitors. Expression of 15LO1 and CCL26 mRNA and protein was analyzed by using quantitative RT-PCR, Western blotting, and ELISA. RESULTS: 15LO1 expression was increased in nasal polyp (NP) epithelial cells compared with middle turbinate epithelial cells from patients with CRSwNP and HCs. 15LO1 expression correlated with CCL26 expression and colocalized with CCL26 expression in basal cells of the middle turbinate and NPs from patients with CRSwNP. In primary NECs in vitro, IL-13 induced 15LO1 and CCL26 expression. 15LO1 knockdown and inhibition decreased IL-13-induced ERK phosphorylation and CCL26 expression. ERK inhibition (alone) similarly decreased IL-13-induced CCL26. Phosphorylated ERK expression was increased in NECs from CRSwNP subjects and positively correlated with both 15LO1 and CCL26 expression. CONCLUSIONS: 15LO1 expression is increased in NP epithelial cells and contributes to CCL26 expression through ERK activation. 15LO1 could be considered a novel therapeutic target for CRSwNP.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Nasal Polyps/metabolism , Respiratory Mucosa/metabolism , Rhinitis/metabolism , Sinusitis/metabolism , Turbinates/metabolism , Adult , Arachidonate 15-Lipoxygenase/genetics , Cells, Cultured , Chemokine CCL26/metabolism , Chronic Disease , Enzyme Activation , Female , Humans , Male , Middle Aged , Nasal Polyps/complications , RNA, Small Interfering/genetics , Respiratory Mucosa/pathology , Rhinitis/complications , Sinusitis/complications , Up-Regulation
8.
Clin Otolaryngol ; 43(5): 1335-1344, 2018 10.
Article in English | MEDLINE | ID: mdl-29992788

ABSTRACT

BACKGROUND: The purpose of this study was to determine whether the expression of 15-lipoxygenase-1 (ALOX15) in primary tumour specimens predicts lymph node metastasis and subsequently clinical outcome in Merkel cell carcinoma (MCC) patients. METHODS: A retrospective medical chart review of 33 patients was performed between 1994 and 2014. Eleven out of 33 (33%) Patients with primary MCC stages I and II were categorised as group I. Twenty two out of 33 (67%) Patients with regional lymph node metastases and/or distant metastases were defined as group II. All available tumour samples were immunostained for ALOX15, Podoplanin and MCPyV large T-protein antibody. RESULTS: ALOX15 expression was observed in 19/23 (83%) primary tumour samples and in all lymph node metastasis. Primary tumours in patients with stage III and IV disease showed a higher expression rate of ALOX15 compared to patients with early stage disease (11/12 (92%) and 8/11 (73%), respectively). In group I, five patients (45%) were MCPyV positive, whereas in group II, 15 patients (68%) were MCPyV positive. The median lymphatic vessel density in ALOX15 negative group I primary tumour samples was lower compared to the median lymphatic vessel density in ALOX15 positive group I primary tumour probes (2.7 range, 1-4.3 vs 4.7 range, 4.0-7.3). Furthermore, all 17 samples of MCC metastases showed ALOX15 expression with a median lymphatic vessel density (not lymph node metastases) of 5.3 (range 2.0-7.3). CONCLUSION: In the current study, we were able to show ALOX15 expression in the primary MCC sample and the metastasis sample. Based on the findings of the current study, expression rate of ALOX15 in primary MCC and metastases is possibly linked to an increased lymphatic vessel density.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/secondary , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Aged , Aged, 80 and over , Biomarkers/metabolism , Carcinoma, Merkel Cell/mortality , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Staging , Predictive Value of Tests , Retrospective Studies , Skin Neoplasms/mortality , Survival Rate
9.
Am J Respir Cell Mol Biol ; 57(6): 692-701, 2017 12.
Article in English | MEDLINE | ID: mdl-28723225

ABSTRACT

Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 µM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.


Subject(s)
Cell Differentiation/drug effects , Epithelial Cells/metabolism , Goblet Cells/metabolism , Hydroxyeicosatetraenoic Acids/biosynthesis , Interleukin-13/pharmacology , Airway Remodeling/drug effects , Arachidonate 15-Lipoxygenase/metabolism , Gene Expression Regulation/drug effects , Hepatocyte Nuclear Factor 3-beta/biosynthesis , Hepatocyte Nuclear Factor 3-gamma/biosynthesis , Humans , Linoleic Acids/biosynthesis , Mucin 5AC/biosynthesis
10.
Bioorg Med Chem ; 24(21): 5380-5387, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27647374

ABSTRACT

Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.


Subject(s)
Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Catalytic Domain/genetics , Lipoxygenase Inhibitors/metabolism , Lipoxygenase Inhibitors/pharmacology , Mutation , Dose-Response Relationship, Drug , Humans , Kinetics , Lipoxygenase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Mutagenesis, Site-Directed , Structure-Activity Relationship
11.
J Allergy Clin Immunol ; 135(5): 1144-53.e1-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25819984

ABSTRACT

BACKGROUND: ß2-Adrenergic receptor (ß2AR) agonists are critical treatments for asthma. However, receptor desensitization can lead to loss of therapeutic effects. Although desensitization to repeated use of ß2-agonists is well studied, type 2 inflammation could also affect ß2AR function. OBJECTIVE: We sought to evaluate the effect of the type 2 cytokine IL-13 on ß2AR desensitization in human airway epithelial cells (HAECs) and determine whether 15-lipoxygenase-1 (15LO1) binding with phosphatidylethanolamine-binding protein 1 (PEBP1) contributes to desensitization through release of G protein receptor kinase 2 (GRK2). METHODS: HAECs in air-liquid interface culture with or without IL-13 (48 hours) or isoproterenol hydrochloride (ISO; 30 minutes) pretreatment were stimulated with ISO (10 minutes). Cyclic adenosine 3, 5-monophosphate (cAMP) levels were measured using ELISA, and ß2AR and GRK2 phosphorylation was measured using Western blotting. Short interfering RNA was used for 15LO1 knockdown. Interactions of GRK2, PEBP1, and 15LO1 were detected by means of immunoprecipitation/Western blotting and immunofluorescence. HAECs and airway tissue from control subjects and asthmatic patients were evaluated for I5LO1, PEBP1, and GRK2. RESULTS: Pretreatment with ISO or IL-13 decreased ISO-induced cAMP generation compared with ISO for 10 minutes alone paralleled by increases in ß2AR and GRK2 phosphorylation. GRK2 associated with PEBP1 after 10 minutes of ISO in association with low phosphorylated GRK2 (pGRK2) levels. In contrast, in the presence of IL-13 plus ISO (10 minutes), binding of GRK2 to PEBP1 decreased, whereas 15LO1 binding and pGRK2 levels increased. 15LO1 knockdown restored ISO-induced cAMP generation. These findings were recapitulated in freshly brushed HAECs from cells and tissue of asthmatic patients. CONCLUSION: IL-13 treatment of HAECs leads to ß2AR desensitization, which involves 15LO1/PEBP1 interactions to free GRK2, and allows it to phosphorylate (and desensitize) ß2ARs, suggesting that the beneficial effects of ß2-agonists could be blunted in patients with type 2 associated asthma.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Interleukin-13/metabolism , Receptors, Adrenergic, beta-2/metabolism , Respiratory Mucosa/metabolism , Adult , Arachidonate 15-Lipoxygenase/genetics , Asthma/diagnosis , Asthma/genetics , Asthma/immunology , Asthma/metabolism , Case-Control Studies , Cyclic AMP/metabolism , Female , Gene Knockdown Techniques , Humans , Interleukin-13/pharmacology , Isoproterenol/pharmacology , Male , Middle Aged , Phosphatidylethanolamine Binding Protein/metabolism , Phosphorylation , Protein Binding , Respiratory Mucosa/drug effects
12.
J Lipid Res ; 56(3): 562-577, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25556764

ABSTRACT

To understand the mechanisms of 15(S)-HETE-induced endothelial cell (EC) barrier dysfunction, we examined the role of xanthine oxidase (XO). 15(S)-HETE induced junction adhesion molecule A (JamA) phosphorylation on Y164, Y218, and Y280 involving XO-mediated reactive oxygen species production and Src and Pyk2 activation, resulting in its dissociation from occludin, thereby causing tight junction (TJ) disruption, increased vascular permeability, and enhanced leukocyte and monocyte transmigration in vitro using EC monolayer and ex vivo using arteries as models. The phosphorylation of JamA on Y164, Y218, and Y280 appears to be critical for its role in 15(S)-HETE-induced EC barrier dysfunction, as mutation of any one of these amino acid residues prevented its dissociation from occludin and restored TJ integrity and barrier function. In response to high-fat diet (HFD) feeding, WT, but not 12/15-lipoxygenase (LO)(-/-), mice showed enhanced XO expression and its activity in the artery, which was correlated with increased aortic TJ disruption and barrier permeability with enhanced leukocyte adhesion and these responses were inhibited by allopurinol. These observations provide novel insights on the role of XO in 12/15-LO-induced JamA tyrosine phosphorylation and TJ disruption leading to increased vascular permeability in response to HFD.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Capillary Permeability/drug effects , Dietary Fats/adverse effects , Endothelium, Vascular/enzymology , Reactive Oxygen Species/metabolism , Tight Junctions/enzymology , Animals , Aorta/metabolism , Aorta/pathology , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/genetics , Capillary Permeability/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Dietary Fats/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/genetics , Eicosapentaenoic Acid/metabolism , Endothelium, Vascular/pathology , Mice , Mice, Knockout , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Tight Junctions/genetics , Tight Junctions/pathology , Xanthine Oxidase/genetics , Xanthine Oxidase/metabolism
13.
Cancer ; 121 Suppl 17: 3130-45, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26331820

ABSTRACT

BACKGROUND: Previous studies have shown that the levels of 15-lipoxygenase 1 (15-LOX-1) and 15-LOX-2 as well as their metabolites 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) are significantly reduced in smokers with non-small cell lung carcinoma (NSCLC). Furthermore, animal model experiments have indicated that the reduction of these molecules occurs before the establishment of cigarette smoking carcinogen-induced lung tumors, and this suggests roles in lung tumorigenesis. However, the functions of these molecules remain unknown in NSCLC. METHODS: NSCLC cells were treated with exogenous 13(S)-HODE and 15(S)-HETE, and then the ways in which they affected cell function were examined. 15-LOX-1 and 15-LOX-2 were also overexpressed in tumor cells to restore these 2 enzymes to generate endogenous 13(S)-HODE and 15(S)-HETE before cell function was assessed. RESULTS: The application of exogenous 13(S)-HODE and 15(S)-HETE significantly enhanced the activity of peroxisome proliferator-activated receptor γ (PPARγ), inhibited cell proliferation, induced apoptosis, and activated caspases 9 and 3. The overexpression of 15-LOX-1 and 15-LOX-2 obviously promoted the endogenous levels of 13(S)-HODE and 15(S)-HETE, which were demonstrated to be more effective in the inhibition of NSCLC. CONCLUSIONS: This study has demonstrated that exogenous or endogenous 13(S)-HODE and 15(S)-HETE can functionally inhibit NSCLC, likely by activating PPARγ. The restoration of 15-LOX activity to increase the production of endogenous 15(S)-HETE and 13(S)-HODE may offer a novel research direction for molecular targeting treatment of smoking-related NSCLC. This strategy can potentially avoid side effects associated with the application of synthetic PPARγ ligands.


Subject(s)
Arachidonate 15-Lipoxygenase/biosynthesis , Carcinoma, Non-Small-Cell Lung/drug therapy , Fatty Acids, Unsaturated/administration & dosage , Hydroxyeicosatetraenoic Acids/administration & dosage , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Arachidonate 15-Lipoxygenase/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , PPAR gamma/genetics
14.
Anal Biochem ; 476: 45-50, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25712042

ABSTRACT

Lipoxygenases (LOXs) regulate inflammation through the production of a variety of molecules whose specific downstream effects are not entirely understood due to the complexity of the inflammation pathway. The generation of these biomolecules can potentially be inhibited and/or allosterically regulated by small synthetic molecules. The current work describes the first mass spectrometric high-throughput method for identifying small molecule LOX inhibitors and LOX allosteric effectors that change the substrate preference of human lipoxygenase enzymes. Using a volatile buffer and an acid-labile detergent, enzymatic products can be directly detected using high-performance liquid chromatography-mass spectrometry (HPLC-MS) without the need for organic extraction. The method also reduces the required enzyme concentration compared with traditional ultraviolet (UV) absorbance methods by approximately 30-fold, allowing accurate binding affinity measurements for inhibitors with nanomolar affinity. The procedure was validated using known LOX inhibitors and the allosteric effector 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13-HODE).


Subject(s)
Lipoxygenase Inhibitors/chemistry , Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Humans , Linoleic Acids/chemistry , Molecular Structure , Substrate Specificity
15.
Front Pharmacol ; 15: 1349725, 2024.
Article in English | MEDLINE | ID: mdl-38523640

ABSTRACT

Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.

16.
Cell Chem Biol ; 30(12): 1508-1524.e7, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37647900

ABSTRACT

Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.


Subject(s)
Cannabidiol , Humans , Animals , Mice , Cannabidiol/pharmacology , Inflammation/drug therapy , Eicosanoids , Macrophages , Fatty Acids, Unsaturated/pharmacology , Immunity, Innate
17.
Eur J Med Chem ; 174: 45-55, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31026746

ABSTRACT

Human 15-lipoxygenase-1 (15-LOX-1) is a mammalian lipoxygenase which plays an important regulatory role in several CNS and inflammatory lung diseases. To further explore the role of this enzyme in drug discovery, novel potent inhibitors with favorable physicochemical properties are required. In order to identify such new inhibitors, we established a combinatorial screening method based on acylhydrazone chemistry. This represents a novel application of combinatorial chemistry focusing on the improvement of physicochemical properties, rather than on potency. This strategy allowed us to efficiently screen 44 reaction mixtures of different hydrazides and our previously reported indole aldehyde core structure, without the need for individual synthesis of all possible combinations of building blocks. Our approach afforded three new inhibitors with IC50 values in the nanomolar range and improved lipophilic ligand efficiency.


Subject(s)
Hydrazones/chemistry , Indoles/chemistry , Lipoxygenase Inhibitors/chemistry , Arachidonate 15-Lipoxygenase/chemistry , Combinatorial Chemistry Techniques , Drug Discovery , Humans , Hydrazones/chemical synthesis , Indoles/chemical synthesis , Ligands , Lipoxygenase Inhibitors/chemical synthesis , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
18.
Helv Chim Acta ; 102(5): e1900040, 2019 May.
Article in English | MEDLINE | ID: mdl-31231138

ABSTRACT

Human 15-lipoxygenase-1 (15-LOX-1) belongs to the class of lipoxygenases, which catalyze oxygenation of polyunsaturated fatty acids, such as arachidonic and linoleic acid. Recent studies have shown that 15-LOX-1 plays an important role in physiological processes linked to several diseases such as airway inflammation disease, coronary artery disease, and several types of cancer such as rectal, colon, breast and prostate cancer. In this study, we aimed to extend the structural diversity of 15-LOX-1 inhibitors, starting from the recently identified indolyl core. In order to find new scaffolds, we employed a combinatorial approach using various aromatic aldehydes and an aliphatic hydrazide tail. This scaffold-hopping study resulted in the identification of the 3-pyridylring as a suitable replacement of the indolyl core with an inhibitory activity in the micromolar range (IC 50=16±6 µm) and a rapid and efficient structure-activity relationship investigation.

19.
Mol Neurobiol ; 55(2): 1537-1550, 2018 02.
Article in English | MEDLINE | ID: mdl-28181190

ABSTRACT

Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory brain disorders and chronic neurodegeneration may 'drain' anti-inflammatory molecules that are necessary for normal neuronal signaling, and compromise cognition.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Docosahexaenoic Acids/metabolism , Memory, Short-Term/physiology , Prefrontal Cortex/metabolism , Spatial Memory/physiology , Animals , Brain/metabolism , Male , Rats , Rats, Wistar
20.
Eur J Med Chem ; 139: 633-643, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28843180

ABSTRACT

Human 15-lipoxygenase-1 (h-15-LOX-1) is a promising drug target in inflammation and cancer. In this study substitution-oriented screening (SOS) has been used to identify compounds with a 2-aminopyrrole scaffold as inhibitors for h-15-LOX-1. The observed structure activity relationships (SAR) proved to be relatively flat. IC50's for the most potent inhibitor of the series did not surpass 6.3 µM and the enzyme kinetics demonstrated uncompetitive inhibition. Based on this, we hypothesized that the investigated 2-aminopyrroles are pan assay interference compounds (PAINS) with photoactivation via a radical mechanism. Our results demonstrated clear photoactivation of h-15-LOX-1 inhibition under UV and visible light. In addition, the investigated 2-aminopyrroles decreased viability of cultured human hepatocarcinoma cells HCC-1.2 in a dose-dependent manner with LD50 ranging from 0.55 ± 0.15 µM (21B10) to 2.75 ± 0.91 µM (22). Taken together, this indicates that photoactivation can play an important role in the biological activity of compounds with a 2-amino-pyrrole scaffold as investigated here.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Light , Pyrroles/pharmacology , Ultraviolet Rays , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neutral Red/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL