Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108219

ABSTRACT

Wild relatives of wheat are essential gene pools for broadening the genetic basis of wheat. Chromosome rearrangements and genomic variation in alien chromosomes are widespread. Knowledge of the genetic variation between alien homologous chromosomes is valuable for discovering and utilizing alien genes. In this study, we found that 5113 and II-30-5, two wheat-A. cristatum 6P addition lines, exhibited considerable differences in heading date, grain number per spike, and grain weight. Genome resequencing and transcriptome analysis revealed significant differences in the 6P chromosomes of the two addition lines, including 143,511 single-nucleotide polymorphisms, 62,103 insertion/deletion polymorphisms, and 757 differentially expressed genes. Intriguingly, genomic variations were mainly distributed in the middle of the chromosome arms and the proximal centromere region. GO and KEGG analyses of the variant genes and differentially expressed genes showed the enrichment of genes involved in the circadian rhythm, carbon metabolism, carbon fixation, and lipid metabolism, suggesting that the differential genes on the 6P chromosome are closely related to the phenotypic differences. For example, the photosynthesis-related genes PsbA, PsbT, and YCF48 were upregulated in II-30-5 compared with 5113. ACS and FabG are related to carbon fixation and fatty acid biosynthesis, respectively, and both carried modification variations and were upregulated in 5113 relative to II-30-5. Therefore, this study provides important guidance for cloning desirable genes from alien homologous chromosomes and for their effective utilization in wheat improvement.


Subject(s)
Agropyron , Agropyron/genetics , Hybridization, Genetic , Chromosomes, Plant/genetics , Phenotype , Genomics
2.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806373

ABSTRACT

Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.


Subject(s)
Agropyron , Basidiomycota , Agropyron/genetics , Basidiomycota/genetics , Chromosomes, Plant , Disease Resistance/genetics , Gene Expression Profiling , Plant Breeding , Plant Diseases/genetics , Transcriptome , Triticum/genetics
3.
Planta ; 245(2): 425-437, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27832372

ABSTRACT

MAIN CONCLUSION: Different types of P genome sequences and markers were developed, which could be used to analyze the evolution of P genome in Triticeae and identify precisely wheat- A. cristatum introgression lines. P genome of Agropyron Gaertn. plays an important role in Triticeae and could provide many desirable genes conferring high yield, disease resistance, and stress tolerance for wheat genetic improvement. Therefore, it is significant to develop specific sequences and functional markers of P genome. In this study, 126 sequences were isolated from the degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) products of microdissected chromosome 6PS. Forty-eight sequences were identified as P genome-specific sequences by dot-blot hybridization and DNA sequences analysis. Among these sequences, 22 displayed the characteristics of retrotransposons, nine and one displayed the characteristics of DNA transposons and tandem repetitive sequence, respectively. Fourteen of 48 sequences were determined to distribute on different regions of P genome chromosomes by fluorescence in situ hybridization, and the distributing regions were as following: all over P genome chromosomes, centromeres, pericentromeric regions, distal regions, and terminal regions. We compared the P genome sequences with other genome sequences of Triticeae and found that the similar sequences of the P genome sequences were widespread in Triticeae, but differentiation occurred to various extents. Additionally, thirty-four molecular markers were developed from the P genome sequences, which could be used for analyzing the evolutionary relationship among 16 genomes of 18 species in Triticeae and identifying P genome chromatin in wheat-A. cristatum introgression lines. These results will not only facilitate the study of structure and evolution of P genome chromosomes, but also provide a rapid detecting tool for effective utilization of desirable genes of P genome in wheat improvement.


Subject(s)
Agropyron/genetics , DNA, Plant/genetics , Genome, Plant , Triticum/genetics , Chromosomes, Plant , Evolution, Molecular , Genetic Markers , In Situ Hybridization, Fluorescence , Poaceae/genetics , Polymerase Chain Reaction/methods
4.
Int J Mol Sci ; 18(11)2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29137188

ABSTRACT

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC2F2 and BC3F2 populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.


Subject(s)
Agropyron/genetics , Basidiomycota/pathogenicity , Disease Resistance/genetics , Genes, Plant , Triticum/genetics , Agropyron/immunology , Agropyron/microbiology , Chromosome Mapping , Chromosomes, Plant/genetics , Triticum/immunology , Triticum/microbiology
5.
Planta ; 244(4): 853-64, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27246315

ABSTRACT

MAIN CONCLUSION: This study explored 6P chromosomal translocations in wheat, and determined the effects of 6P intercalary chromosome segments on kernel number per wheat spike. Exploiting and utilising gene(s) from wild relative species has become an essential strategy for wheat crop improvement. In the translocation line Pubing2978, the intercalary 6P chromosome segment from Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) carried valuable multi-kernel gene(s) and was selected from the offspring of the common wheat plant Fukuho and the irradiated wheat-A. cristatum 6P disomic substitution line 4844-8. Genomic in situ hybridisation (GISH), dual-colour fluorescence in situ hybridisation (FISH), and molecular markers were used to detect the small segmental 6P chromosome in the wheat background and its translocation breakpoint. Cytological studies demonstrated that Pubing2978 was a T1AS-6PL-1AS·1AL intercalary translocation with 42 chromosomes. The breakpoint was located near the centromeric region on the wheat chromosome 1AS and was flanked by the markers SSR12 and SSR283 based on an F2 linkage map. The genotypic data, combined with the phenotypic information, implied that A. cristatum 6P chromosomal segment plays an important role in regulating the kernel number per spike (KPS). By comparison, the mean value of KPS in plants with translocations was approximately 10 higher than that in plants without translocations in three segregated populations. Moreover, the improvement in KPS was likely achieved by increasing both the spikelet number per spike (SNS) and the kernel number per spikelet. These excellent agronomic traits laid the foundation for further investigation of valuable genes and make the Pubing2978 line a promising germplasm for wheat breeding.


Subject(s)
Agropyron/genetics , Chromosomes, Plant/genetics , Inflorescence/genetics , Seeds/genetics , Triticum/genetics , Crosses, Genetic , Genotype , Hybrid Vigor/genetics , Hybridization, Genetic , Phenotype
6.
Front Plant Sci ; 9: 817, 2018.
Article in English | MEDLINE | ID: mdl-29971077

ABSTRACT

Wheat leaf rust is one of the most common wheat diseases worldwide and can cause up to 40% wheat yield loss. To combat the growth and spread of leaf rust disease, continual exploration and identification of new and effective resistance genes are needed. Here, we report for the first time a locus conferring leaf rust resistance located on the long arm of Agropyron cristatum chromosome 2P in Triticum aestivum-A. cristatum 2P translocation lines. This study used 50 leaf rust races, including two Chinese major dominant leaf rust races, named by THT and PHT, and other 48 different leaf rust races collected from 11 provinces, 1autonomous region and 1 municipality of China to test the resistance to T. aestivum-A. cristatum 2P chromosome translocation lines and their backcross populations, the results indicated that the novel leaf rust resistance locus was immune or nearly immune to all tested leaf rust races. Four long arm translocation lines with different breakpoints of A. cristatum chromosome 2PL and their backcross populations were tested with leaf rust race THT at the seedling and adult stages and genotyped with 2P-specific STS markers. The results showed that the novel leaf rust resistance locus of the T. aestivum-A. cristatum 2P translocation lines was located in the chromosomal bin FL 0.66-0.86 of 2PL. Therefore, T. aestivum-A. cristatum 2P chromosome translocation lines conferring leaf rust resistance locus could provide a novel disease-resistance resource for future wheat breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL