Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 679
Filter
Add more filters

Publication year range
1.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30580964

ABSTRACT

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Subject(s)
Mevalonic Acid/metabolism , Tumor Suppressor Protein p53/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Cell Line , Cholesterol/metabolism , Female , Genes, Tumor Suppressor , HCT116 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Promoter Regions, Genetic , Sterol Regulatory Element Binding Protein 2/metabolism , Terpenes/metabolism
2.
Cell ; 169(7): 1228-1239.e10, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28602350

ABSTRACT

ABCA1, an ATP-binding cassette (ABC) subfamily A exporter, mediates the cellular efflux of phospholipids and cholesterol to the extracellular acceptor apolipoprotein A-I (apoA-I) for generation of nascent high-density lipoprotein (HDL). Mutations of human ABCA1 are associated with Tangier disease and familial HDL deficiency. Here, we report the cryo-EM structure of human ABCA1 with nominal resolutions of 4.1 Å for the overall structure and 3.9 Å for the massive extracellular domain. The nucleotide-binding domains (NBDs) display a nucleotide-free state, while the two transmembrane domains (TMDs) contact each other through a narrow interface in the intracellular leaflet of the membrane. In addition to TMDs and NBDs, two extracellular domains of ABCA1 enclose an elongated hydrophobic tunnel. Structural mapping of dozens of disease-related mutations allows potential interpretation of their diverse pathogenic mechanisms. Structural-based analysis suggests a plausible "lateral access" mechanism for ABCA1-mediated lipid export that may be distinct from the conventional alternating-access paradigm.


Subject(s)
ATP Binding Cassette Transporter 1/chemistry , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Amino Acid Sequence , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Domains , Sequence Alignment
3.
J Biol Chem ; 300(5): 107224, 2024 May.
Article in English | MEDLINE | ID: mdl-38537695

ABSTRACT

Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1ß also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/ß downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/ß, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.


Subject(s)
Atherosclerosis , Cholesterol , Foam Cells , Lipoproteins, LDL , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Humans , Male , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Cholesterol/metabolism , Diet, Western/adverse effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Foam Cells/metabolism , Foam Cells/pathology , Lipoproteins, LDL/metabolism , Liver X Receptors/metabolism , Liver X Receptors/genetics , Mice, Knockout, ApoE , RAW 264.7 Cells , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
Circulation ; 149(10): 774-787, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38018436

ABSTRACT

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Subject(s)
Apolipoprotein A-I , Cardiovascular Diseases , Humans , Apolipoprotein A-I/metabolism , Cardiovascular Diseases/metabolism , Lipoproteins, HDL/metabolism , Cholesterol , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Macrophages/metabolism , Cholesterol, HDL
5.
Annu Rev Physiol ; 83: 153-181, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33141631

ABSTRACT

Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Biological Transport/physiology , Sterols/metabolism , Animals , Cholesterol/metabolism , Humans
6.
J Lipid Res ; 65(1): 100486, 2024 01.
Article in English | MEDLINE | ID: mdl-38104944

ABSTRACT

Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.


Subject(s)
Hydroxycholesterols , Oxysterols , Animals , Hydroxycholesterols/metabolism , Cholesterol/metabolism , Biological Transport , Lipoproteins/metabolism , Mammals/metabolism
7.
Am J Physiol Renal Physiol ; 326(2): F265-F277, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38153852

ABSTRACT

Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.


Subject(s)
Hypertension , Sodium , Animals , Male , Mice , Blood Pressure , Cholesterol/pharmacology , Epithelial Sodium Channels/metabolism , Mice, Knockout , Mice, Transgenic , Sodium/metabolism
8.
Ann Hum Genet ; 88(4): 279-286, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38192238

ABSTRACT

INTRODUCTION: Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS. However, studies to elucidate the contribution of genetic factors to MetS in Mexico are scarce. A recent study showed that variant rs9282541 (A-allele) in ATP-binding cassette transporter A1 (ABCA1) was associated with T2D in the Maya population in addition to low levels of high-density lipoprotein cholesterol (HDL-C). Thus, this study aimed to determine whether the genetic variant of ABCA1 A-allele (rs9282541, NM_005502.4:c.688C > T, NP_005493.2:p.Arg230Cys) is associated with MetS and its components in Mexican Maya children. METHODS: The study was conducted in 508 children aged 9-13 from the Yucatán Peninsula. MetS was identified according to the de Ferranti criteria. Genotyping was performed using TaqMan assay by real-time PCR. Evaluation of genetic ancestry group was included. RESULTS: The frequency of MetS and overweight-obesity was 45.9% and 41.6%, respectively. The genetic variant rs9282541 was associated with low HDL-C and high glucose concentrations. Remarkably, for the first time, this study showed the association of ABCA1 rs9282541 with MetS in Maya children with an OR of 3.076 (95% CI = 1.16-8.13 p = 0.023). Finally, this study reveals a high prevalence of MetS and suggests that variant rs9282541 of the ABCA1 gene plays an important role in the developing risk of MetS in Maya children.


Subject(s)
ATP Binding Cassette Transporter 1 , Genetic Predisposition to Disease , Metabolic Syndrome , Polymorphism, Single Nucleotide , Humans , ATP Binding Cassette Transporter 1/genetics , Metabolic Syndrome/genetics , Child , Male , Female , Mexico , Adolescent , Alleles , Genotype , Cholesterol, HDL/blood , Risk Factors
9.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010173

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Subject(s)
ATP Binding Cassette Transporter 1 , Lipid Droplets , Mice, Inbred C57BL , MicroRNAs , Microglia , Spinal Cord Injuries , Up-Regulation , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Microglia/metabolism , Microglia/pathology , Animals , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Lipid Droplets/metabolism , Mice , Cell Line , Male , Lipid Metabolism/genetics
10.
FASEB J ; 37(8): e23048, 2023 08.
Article in English | MEDLINE | ID: mdl-37389895

ABSTRACT

Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.


Subject(s)
Atherosclerosis , Foam Cells , Humans , Animals , Mice , Muscle, Smooth, Vascular , Cytochrome P-450 Enzyme System , Transcription Factors , Atherosclerosis/genetics , Apolipoproteins E/genetics , Cytochrome P-450 CYP4A , ATP Binding Cassette Transporter 1/genetics
11.
Brain Behav Immun ; 119: 431-453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636566

ABSTRACT

Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.


Subject(s)
ATP Binding Cassette Transporter 1 , Macrophages , Spinal Cord Injuries , Animals , ATP Binding Cassette Transporter 1/metabolism , Spinal Cord Injuries/metabolism , Mice , Male , Macrophages/metabolism , Foam Cells/metabolism , Mice, Inbred C57BL , Spinal Cord/metabolism , Mice, Knockout , Disease Models, Animal
12.
Exp Lung Res ; 50(1): 53-64, 2024.
Article in English | MEDLINE | ID: mdl-38509754

ABSTRACT

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Subject(s)
Benzoates , Benzylamines , Cigarette Smoking , Emphysema , Pulmonary Emphysema , Animals , Mice , Airway Remodeling , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Emphysema/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Liver X Receptors/metabolism , Lung/metabolism , Mice, Inbred C57BL
13.
Mol Biol Rep ; 51(1): 657, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740636

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS: In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS: The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.


Subject(s)
ATP Binding Cassette Transporter 1 , Liver X Receptors , RNA, Messenger , Tuberculosis, Pulmonary , Adult , Female , Humans , Male , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Case-Control Studies , India , Mycobacterium tuberculosis/genetics , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism
14.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488691

ABSTRACT

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Guinea Pigs , Humans , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Receptor for Advanced Glycation End Products/metabolism , Cholesterol 24-Hydroxylase/metabolism , Brain/metabolism , Aging , Cholesterol/metabolism
15.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062791

ABSTRACT

Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness.


Subject(s)
ATP Binding Cassette Transporter 1 , Cholesterol , Leukocytes, Mononuclear , Liver X Receptors , Liver , Obesity, Morbid , Receptors, Leptin , Humans , Obesity, Morbid/metabolism , Obesity, Morbid/surgery , Obesity, Morbid/genetics , Male , Leukocytes, Mononuclear/metabolism , Female , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Adult , Cholesterol/metabolism , Liver X Receptors/metabolism , Liver X Receptors/genetics , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Middle Aged , Liver/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Signal Transduction , Biological Transport , Gene Expression Regulation , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
16.
J Lipid Res ; 64(2): 100319, 2023 02.
Article in English | MEDLINE | ID: mdl-36525992

ABSTRACT

Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant's content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.


Subject(s)
Apolipoprotein A-I , High-Density Lipoproteins, Pre-beta , Humans , Apolipoprotein A-I/metabolism , Dimyristoylphosphatidylcholine , Lipoproteins/metabolism , Triglycerides , Mutation
17.
J Lipid Res ; 64(6): 100385, 2023 06.
Article in English | MEDLINE | ID: mdl-37169287

ABSTRACT

This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. § Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.


Subject(s)
Cholesterol , High-Density Lipoproteins, Pre-beta , Cholesterol/metabolism , Biological Transport , Sterols , Phospholipids , ATP Binding Cassette Transporter 1/metabolism
18.
J Biol Chem ; 298(12): 102702, 2022 12.
Article in English | MEDLINE | ID: mdl-36395885

ABSTRACT

Cholesterol is a major and essential component of the mammalian cell plasma membrane (PM), and the loss of cholesterol homeostasis leads to various pathologies. Cellular cholesterol uptake and synthesis are regulated by a cholesterol sensor in the endoplasmic reticulum (ER). However, it remains unclear how changes in the cholesterol level of the PM are recognized. Here, we show that the sensing of cholesterol in the PM depends on ABCA1 and the cholesterol transfer protein Aster-A, which cooperatively maintain the asymmetric transbilayer cholesterol distribution in the PM. We demonstrate that ABCA1 translocates (flops) cholesterol from the inner leaflet of the PM to the outer leaflet of the PM to maintain a low inner leaflet cholesterol level. We also found that when inner cholesterol levels were increased, Aster-A was recruited to the PM-ER contact site to transfer cholesterol to the ER. These results suggest that ABCA1 could promote an asymmetric cholesterol distribution to suppress Aster-A recruitment to the PM-ER contact site to maintain intracellular cholesterol homeostasis.


Subject(s)
ATP Binding Cassette Transporter 1 , Cholesterol , Mammals , Microtubule-Associated Proteins , Animals , Biological Transport , Cell Membrane/metabolism , Cholesterol/metabolism , Mammals/metabolism
19.
Curr Issues Mol Biol ; 45(9): 7043-7057, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37754229

ABSTRACT

Atherosclerosis is the leading cause of cardiovascular diseases in Mexico and worldwide. The membrane transporters ABCA1 and ABCG1 are involved in the reverse transport of cholesterol and stimulate the HDL synthesis in hepatocytes, therefore the deficiency of these transporters promotes the acceleration of atherosclerosis. MicroRNA-33 (miR-33) plays an important role in lipid metabolism and exerts a negative regulation on the transporters ABCA1 and ABCG1. It is known that by inhibiting the function of miR-33 with antisense RNA, HDL levels increase and atherogenic risk decreases. Therefore, in this work, a genetic construct, pPEPCK-antimiR-33-IRES2-EGFP, containing a specific antimiR-33 sponge with two binding sites for miR-33 governed under the PEPCK promoter was designed, constructed, and characterized, the identity of which was confirmed by enzymatic restriction, PCR, and sequencing. Hep G2 and Hek 293 FT cell lines, as well as a mouse hepatocyte primary cell culture were transfected with this plasmid construction showing expression specificity of the PEPCK promoter in hepatic cells. An analysis of the relative expression of miR-33 target messengers showed that the antimiR-33 sponge indirectly induces the expression of its target messengers (ABCA1 and ABCG1). This strategy could open new specific therapeutic options for hypercholesterolemia and atherosclerosis, by blocking the miR-33 specifically in hepatocytes.

20.
J Hepatol ; 79(6): 1491-1501, 2023 12.
Article in English | MEDLINE | ID: mdl-37678722

ABSTRACT

BACKGROUND & AIMS: While it is recognized that non-alcoholic fatty liver disease (NAFLD) is associated with cardiovascular disease (CVD), how NAFLD affects the development and progression of CVD remains unclear and debatable. Hence, we aimed to determine the role of steatotic hepatocyte-derived small extracellular vesicles (sEVs) in foam cell formation and atherosclerosis progression. METHODS: sEVs from steatotic hepatocytes were isolated and characterized. MicroRNA (miRNA) deep sequencing was utilized to identify functional miRNA in sEVs. Lastly, we conducted a cross-sectional study on patients with NAFLD to validate these findings. RESULTS: Treatment of sEVs from steatotic hepatocytes promoted macrophage-derived foam cell formation and atherosclerosis progression via inhibition of ABCA1-mediated cholesterol efflux. Macrophage-specific deletion of Abca1 in ApoE-/- mice abolished the role of steatotic hepatocyte-derived sEVs in atherosclerosis progression. In addition, hepatocyte-specific deletion of Rab27a, which is the key GTPase regulating sEV release, significantly ameliorated high-fat, high-cholesterol diet-induced atherosclerosis progression in ApoE-/- mice. The miRNA deep sequencing results showed that miR-30a-3p was enriched in sEVs from steatotic hepatocytes. miR-30a-3p directly targeted the 3' untranslated region of ABCA1 to inhibit ABCA1 expression and cholesterol efflux. Treatment with antagomiR-30a-3p significantly attenuated atherosclerosis progression in high-fat, high-cholesterol diet-fed ApoE-/- mice. Moreover, serum sEVs from patients with NAFLD and sEV-miR-30a-3p expression were associated with decreased cholesterol efflux levels in foam cells. CONCLUSION: Steatotic hepatocyte-derived sEVs promote foam cell formation and facilitate atherogenesis via the miR-30a-3p/ABCA1 axis. Reducing sEV secretion by steatotic hepatocytes or targeting miR-30a-3p may be potential therapeutic approaches to slow the progression of NAFLD-driven atherosclerosis. IMPACT AND IMPLICATIONS: The presence of hepatic steatosis is strongly correlated with the risk of cardiovascular disease and cardiovascular events, yet the molecular mechanisms linking steatosis to progression of atherosclerosis are unclear. Herein, we identified small extracellular vesicles from steatotic hepatocytes as a trigger that accelerated the progression of atherosclerosis. Steatotic hepatocyte-derived small extracellular vesicles promoted foam cell formation via the miR-30a-3p/ABCA1 axis. Our findings not only provide mechanistic insight into non-alcoholic fatty liver disease-driven atherosclerosis but also provide potential therapeutic targets for patients with atherosclerosis.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Extracellular Vesicles , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/etiology , Cross-Sectional Studies , Atherosclerosis/etiology , Atherosclerosis/metabolism , MicroRNAs/metabolism , Cholesterol/metabolism , Extracellular Vesicles/metabolism , Apolipoproteins E/genetics
SELECTION OF CITATIONS
SEARCH DETAIL