Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Proc Natl Acad Sci U S A ; 121(38): e2400781121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39259589

ABSTRACT

During homeostasis, the endoplasmic reticulum (ER) maintains productive transmembrane and secretory protein folding that is vital for proper cellular function. The ER-resident HSP70 chaperone, binding immunoglobulin protein (BiP), plays a pivotal role in sensing ER stress to activate the unfolded protein response (UPR). BiP function is regulated by the bifunctional enzyme filamentation induced by cyclic-AMP domain protein (FicD) that mediates AMPylation and deAMPylation of BiP in response to changes in ER stress. AMPylated BiP acts as a molecular rheostat to regulate UPR signaling, yet little is known about the molecular consequences of FicD loss. In this study, we investigate the role of FicD in mouse embryonic fibroblast (MEF) response to pharmacologically and metabolically induced ER stress. We find differential BiP AMPylation signatures when comparing robust chemical ER stress inducers to physiological glucose starvation stress and recovery. Wildtype MEFs respond to pharmacological ER stress by down-regulating BiP AMPylation. Conversely, BiP AMPylation in wildtype MEFs increases upon metabolic stress induced by glucose starvation. Deletion of FicD results in widespread gene expression changes under baseline growth conditions. In addition, FicD null MEFs exhibit dampened UPR signaling, altered cell stress recovery response, and unconstrained protein secretion. Taken together, our findings indicate that FicD is important for tampering UPR signaling, stress recovery, and the maintenance of secretory protein homeostasis.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fibroblasts , Glucose , Unfolded Protein Response , Animals , Mice , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Fibroblasts/metabolism , Glucose/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Mice, Knockout , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 119(32): e2208317119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914137

ABSTRACT

The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.


Subject(s)
Cyclic AMP , Drosophila Proteins , Drosophila melanogaster , Endoplasmic Reticulum Stress , Nucleotidyltransferases , Stress, Physiological , Unfolded Protein Response , Animals , Mice , Alleles , Cyclic AMP/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Pancreas/drug effects , Pancreas/enzymology , Pancreas/metabolism , Pancreas/physiopathology , Stress, Physiological/drug effects , Unfolded Protein Response/drug effects
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723071

ABSTRACT

Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational , rac GTP-Binding Proteins/chemistry , rac GTP-Binding Proteins/metabolism , Amino Acid Sequence , Bartonella , Binding Sites , Models, Molecular , Multigene Family , Protein Binding , Protein Conformation , Structure-Activity Relationship , rac GTP-Binding Proteins/genetics
4.
EMBO J ; 38(21): e102177, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31531998

ABSTRACT

AMPylation is an inactivating modification that alters the activity of the major endoplasmic reticulum (ER) chaperone BiP to match the burden of unfolded proteins. A single ER-localised Fic protein, FICD (HYPE), catalyses both AMPylation and deAMPylation of BiP. However, the basis for the switch in FICD's activity is unknown. We report on the transition of FICD from a dimeric enzyme, that deAMPylates BiP, to a monomer with potent AMPylation activity. Mutations in the dimer interface, or of residues along an inhibitory pathway linking the dimer interface to the enzyme's active site, favour BiP AMPylation in vitro and in cells. Mechanistically, monomerisation relieves a repressive effect allosterically propagated from the dimer interface to the inhibitory Glu234, thereby permitting AMPylation-competent binding of MgATP. Moreover, a reciprocal signal, propagated from the nucleotide-binding site, provides a mechanism for coupling the oligomeric state and enzymatic activity of FICD to the energy status of the ER.


Subject(s)
Endoplasmic Reticulum/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Protein Multimerization , Protein Processing, Post-Translational , Endoplasmic Reticulum Chaperone BiP , HEK293 Cells , Humans , Protein Conformation
5.
IUBMB Life ; 75(4): 370-376, 2023 04.
Article in English | MEDLINE | ID: mdl-36602414

ABSTRACT

Catalytically inactive kinases, known as pseudokinases, are conserved in all three domains of life. Due to the lack of catalytic residues, pseudokinases are considered to act as allosteric regulators and scaffolding proteins with no enzymatic function. However, since these "dead" kinases are conserved along with their active counterparts, a role for pseudokinases may have been overlooked. In this review, we will discuss the recently characterized pseudokinases Selenoprotein O, Legionella effector SidJ, and the SARS-CoV2 protein nsp12 which catalyze AMPylation, glutamylation, and RNAylation, respectively. These studies provide structural and mechanistic insight into the versatility and diversity of the kinase fold.


Subject(s)
COVID-19 , RNA, Viral , Humans , SARS-CoV-2 , Phosphotransferases , Catalysis
6.
Angew Chem Int Ed Engl ; 62(8): e202213279, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36524454

ABSTRACT

Diadenosine polyphosphates (Apn As) are non-canonical nucleotides whose cellular concentrations increase during stress and are therefore termed alarmones, signaling homeostatic imbalance. Their cellular role is poorly understood. In this work, we assessed Apn As for their usage as cosubstrates for protein AMPylation, a post-translational modification in which adenosine monophosphate (AMP) is transferred to proteins. In humans, AMPylation mediated by the AMPylator FICD with ATP as a cosubstrate is a response to ER stress. Herein, we demonstrate that Ap4 A is proficiently consumed for AMPylation by FICD. By chemical proteomics using a new chemical probe, we identified new potential AMPylation targets. Interestingly, we found that AMPylation targets of FICD may differ depending on the nucleotide cosubstrate. These results may suggest that signaling at elevated Ap4 A levels during cellular stress differs from when Ap4 A is present at low concentrations, allowing response to extracellular cues.


Subject(s)
Guanosine Pentaphosphate , Proteins , Humans , Guanosine Pentaphosphate/metabolism , Proteins/metabolism , Adenosine Monophosphate/metabolism , Dinucleoside Phosphates/metabolism , Protein Processing, Post-Translational
7.
J Biol Chem ; 297(3): 100991, 2021 09.
Article in English | MEDLINE | ID: mdl-34419450

ABSTRACT

Fic domain-containing AMP transferases (fic AMPylases) are conserved enzymes that catalyze the covalent transfer of AMP to proteins. This posttranslational modification regulates the function of several proteins, including the ER-resident chaperone Grp78/BiP. Here we introduce a mouse FICD (mFICD) AMPylase knockout mouse model to study fic AMPylase function in vertebrates. We find that mFICD deficiency is well tolerated in unstressed mice. We also show that mFICD-deficient mouse embryonic fibroblasts are depleted of AMPylated proteins. mFICD deletion alters protein synthesis and secretion in splenocytes, including that of IgM, an antibody secreted early during infections, and the proinflammatory cytokine IL-1ß, without affecting the unfolded protein response. Finally, we demonstrate that visual nonspatial short-term learning is stronger in old mFICD-/- mice than in wild-type controls while other measures of cognition, memory, and learning are unaffected. Together, our results suggest a role for mFICD in adaptive immunity and neuronal plasticity in vivo.


Subject(s)
Cytokines/metabolism , Learning , Transferases/metabolism , Visual Perception , Animals , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Mice , Mice, Knockout
8.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269596

ABSTRACT

The human Fic domain-containing protein (FICD) is a type II endoplasmic reticulum (ER) membrane protein that is important for the maintenance of ER proteostasis. Structural and in vitro biochemical characterisation of FICD AMPylase and deAMPylase activity have been restricted to the soluble ER-luminal domain produced in Escherichia coli. Information about potentially important features, such as structural motifs, modulator binding sites or other regulatory elements, is therefore missing for the approximately 100 N-terminal residues including the transmembrane region of FICD. Expressing and purifying the required quantity and quality of membrane proteins is demanding because of the low yields and poor stability often observed. Here, we produce full-length FICD by combining a Saccharomyces cerevisiae-based platform with green fluorescent protein (GFP) tagging to optimise the conditions for expression, solubilisation and purification. We subsequently employ these conditions to purify milligram quantities of His-tagged FICD per litre of culture, and show that the purified, detergent-solubilised membrane protein is an active deAMPylating enzyme. Our work provides a straightforward methodology for producing not only full-length FICD, but also other membrane proteins in S. cerevisiae for structural and biochemical characterisation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
J Biol Chem ; 295(31): 10689-10708, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32518165

ABSTRACT

Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.


Subject(s)
Adenosine Triphosphatases/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein Processing, Post-Translational/physiology , Animals , Humans
10.
J Cell Sci ; 132(6)2019 03 18.
Article in English | MEDLINE | ID: mdl-30886003

ABSTRACT

We describe a method, termed cryoAPEX, which couples chemical fixation and high-pressure freezing of cells with peroxidase tagging (APEX) to allow precise localization of membrane proteins in the context of a well-preserved subcellular membrane architecture. Further, cryoAPEX is compatible with electron tomography. As an example, we apply cryoAPEX to obtain a high-resolution three-dimensional contextual map of the human FIC (filamentation induced by cAMP) protein, HYPE (also known as FICD). HYPE is a single-pass membrane protein that localizes to the endoplasmic reticulum (ER) lumen and regulates the unfolded protein response. Alternate cellular locations for HYPE have been suggested. CryoAPEX analysis shows that, under normal and/or resting conditions, HYPE localizes robustly within the subdomains of the ER and is not detected in the secretory pathway or other organelles. CryoAPEX is broadly applicable for assessing both lumenal and cytosol-facing membrane proteins.


Subject(s)
Electron Microscope Tomography/methods , Membrane Proteins/ultrastructure , Chemokine CCL7/metabolism , Chemokine CCL7/ultrastructure , Cryopreservation/methods , Cytosol/metabolism , Cytosol/ultrastructure , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , HEK293 Cells , Humans , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/ultrastructure
11.
Annu Rev Microbiol ; 70: 341-60, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27482742

ABSTRACT

The ubiquitous proteins with FIC (filamentation induced by cyclic AMP) domains use a conserved enzymatic machinery to modulate the activity of various target proteins by posttranslational modification, typically AMPylation. Following intensive study of the general properties of FIC domain catalysis, diverse molecular activities and biological functions of these remarkably versatile proteins are now being revealed. Here, we review the biological diversity of FIC domain proteins and summarize the underlying structure-function relationships. The original and most abundant genuine bacterial FIC domain proteins are toxins that use diverse molecular activities to interfere with bacterial physiology in various, yet ill-defined, biological contexts. Host-targeted virulence factors have evolved repeatedly out of this pool by exaptation of the enzymatic FIC domain machinery for the manipulation of host cell signaling in favor of bacterial pathogens. The single human FIC domain protein HypE (FICD) has a specific function in the regulation of protein stress responses.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodiversity , Genetic Variation , Models, Molecular , Protein Domains
12.
Proc Natl Acad Sci U S A ; 115(22): E5008-E5017, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760078

ABSTRACT

Proteostasis is critical to maintain organismal viability, a process counteracted by aging-dependent protein aggregation. Chaperones of the heat shock protein (HSP) family help control proteostasis by reducing the burden of unfolded proteins. They also oversee the formation of protein aggregates. Here, we explore how AMPylation, a posttranslational protein modification that has emerged as a powerful modulator of HSP70 activity, influences the dynamics of protein aggregation. We find that adjustments of cellular AMPylation levels in Caenorhabditis elegans directly affect aggregation properties and associated toxicity of amyloid-ß (Aß), of a polyglutamine (polyQ)-extended polypeptide, and of α-synuclein (α-syn). Expression of a constitutively active C. elegans AMPylase FIC-1(E274G) under its own promoter expedites aggregation of Aß and α-syn, and drastically reduces their toxicity. A deficiency in AMPylation decreases the cellular tolerance for aggregation-prone polyQ proteins and alters their aggregation behavior. Overexpression of FIC-1(E274G) interferes with cell survival and larval development, underscoring the need for tight control of AMPylase activity in vivo. We thus define a link between HSP70 AMPylation and the dynamics of protein aggregation in neurodegenerative disease models. Our results are consistent with a cytoprotective, rather than a cytotoxic, role for such protein aggregates.


Subject(s)
Adenosine Monophosphate/metabolism , Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Peptides/metabolism , Protein Aggregation, Pathological/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational , Proteostasis/physiology , alpha-Synuclein/metabolism
13.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209803

ABSTRACT

AMPylation is a prevalent posttranslational modification that involves the addition of adenosine monophosphate (AMP) to proteins. Exactly how Huntingtin-associated yeast-interacting protein E (HYPE), as the first human protein, is involved in the transformation of the AMP moiety to its substrate target protein (the endoplasmic reticulum chaperone binding to immunoglobulin protein (BiP)) is still an open question. Additionally, a conserved glutamine plays a vital key role in the AMPylation reaction in most filamentation processes induced by the cAMP (Fic) protein. In the present work, the detailed catalytic AMPylation mechanisms in HYPE were determined based on the density functional theory (DFT) method. Molecular dynamics (MD) simulations were further used to investigate the exact role of the inhibitory glutamate. The metal center, Mg2+, in HYPE has been examined in various coordination configurations, including 4-coordrinated, 5-coordinated and 6-coordinated. DFT calculations revealed that the transformation of the AMP moiety of HYPE with BiP followed a sequential pathway. The model with a 4-coordinated metal center had a barrier of 14.7 kcal/mol, which was consistent with the experimental value and lower than the 38.7 kcal/mol barrier of the model with a 6-coordinated metal center and the 31.1 kcal/mol barrier of the model with a 5-coordinated metal center. Furthermore, DFT results indicated that Thr518 residue oxygen directly attacks the phosphorus, while the His363 residue acts as H-bond acceptor. At the same time, an MD study indicated that Glu234 played an inhibitory role in the α-inhibition helix by regulating the hydrogen bond interaction between Arg374 and the Pγ of the ATP molecule. The revealed sequential pathway and the inhibitory role of Glu234 in HYPE were inspirational for understanding the catalytic and inhibitory mechanisms of Fic-mediated AMP transfer, paving the way for further studies on the physiological role of Fic enzymes.


Subject(s)
Adenosine Monophosphate/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational , Crystallography, X-Ray , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Humans , Membrane Proteins/chemistry , Metabolic Networks and Pathways , Models, Molecular , Molecular Dynamics Simulation , Nucleotidyltransferases/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping
14.
Crit Rev Biochem Mol Biol ; 53(6): 607-622, 2018 12.
Article in English | MEDLINE | ID: mdl-30280944

ABSTRACT

Derived from an ancient ATP-hydrolyzing Rossmann-like fold protein, members of the PP-loop ATP pyrophosphatase family feature an absolutely conserved P-loop-like "SxGxDS/T" motif used for binding and presenting ATP for substrate adenylylation (AMPylation). Since the first family member was reported more than 20 years ago, numerous representatives catalyzing very diverse reactions have been characterized both functionally and structurally. The availability of more than 100 high quality structures in the protein data bank provides an excellent opportunity to gain structural insights into the generally conserved catalytic mechanism and the uniqueness of the reactions catalyzed by family members. In this work, we conducted a thorough database search for the PP-loop ATP pyrophosphatase family members, resulting in the most comprehensive and up-to-date collection that includes 18 enzyme families. Structure comparison of representative family members allowed us to identify common structure features in the core catalytic domain, as well as four highly variable regions that define the unique chemistry for each enzyme family. The newly identified enzymes, particularly those from pathogens, warrant further research to enlarge the scope of this ever-expanding and highly diverse enzyme superfamily for use in potential bioengineering and biomedical applications.


Subject(s)
Pyrophosphatases/chemistry , Amino Acid Motifs , Animals , Humans , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
15.
Chembiochem ; 21(9): 1285-1287, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32027064

ABSTRACT

Conjugation of proteins to AMP (AMPylation) is a prevalent post-translational modification (PTM) in human cells, involved in the regulation of unfolded protein response and neural development. Here we present a tailored pronucleotide probe suitable for in situ imaging and chemical proteomics profiling of AMPylated proteins. Using straightforward strain-promoted azide-alkyne click chemistry, the probe provides stable fluorescence labelling in living cells.


Subject(s)
Adenosine Monophosphate/chemistry , Protein Processing, Post-Translational , Proteins/chemistry , Proteome/metabolism , Alkynes/chemistry , Azides/chemistry , Click Chemistry , Fluorescence , HeLa Cells , Humans , Molecular Imaging , Proteins/metabolism , Proteome/analysis
16.
Proc Natl Acad Sci U S A ; 114(2): E152-E160, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28031489

ABSTRACT

Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes-huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively-in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Cyclic AMP/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Cell Line , Cytosol/metabolism , Humans , Influenza A virus/physiology , Influenza, Human , Membrane Proteins/genetics , Nucleotidyltransferases/genetics , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Virus Replication
17.
Int J Mol Sci ; 21(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992526

ABSTRACT

The covalent transfer of the AMP portion of ATP onto a target protein-termed adenylylation or AMPylation-by the human Fic protein HYPE/FICD has recently garnered attention as a key regulatory mechanism in endoplasmic reticulum homeostasis, neurodegeneration, and neurogenesis. As a central player in such critical cellular events, high-throughput screening (HTS) efforts targeting HYPE-mediated AMPylation warrant investigation. Herein, we present a dual HTS assay for the simultaneous identification of small-molecule activators and inhibitors of HYPE AMPylation. Employing the fluorescence polarization of an ATP analog fluorophore-Fl-ATP-we developed and optimized an efficient, robust assay that monitors HYPE autoAMPylation and is amenable to automated, high-throughput processing of diverse chemical libraries. Challenging our pilot screen with compounds from the LOPAC, Spectrum, MEGx, and NATx libraries yielded 0.3% and 1% hit rates for HYPE activators and inhibitors, respectively. Further, these hits were assessed for dose-dependency and validated via orthogonal biochemical AMPylation assays. We thus present a high-quality HTS assay suitable for tracking HYPE's enzymatic activity, and the resultant first small-molecule manipulators of HYPE-promoted autoAMPylation.


Subject(s)
Enzyme Inhibitors/chemistry , Membrane Proteins , Molecular Docking Simulation , Nucleotidyltransferases , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Drug Evaluation, Preclinical , Endoplasmic Reticulum Chaperone BiP , Fluorescence Polarization , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/chemistry
18.
J Biol Chem ; 293(27): 10435-10437, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29643182

ABSTRACT

My winding path toward a career in science was awkward, like an adolescent finding an identity. It did not follow a classic course; it had many interruptions, complications, and challenges. It also involved a bit of luck and extremely supportive colleagues, mentors, and family, including my husband, children, and in-laws. I was inspired to tell my story here because I met a young woman interviewing in 2018 for graduate school who is growing up with the same complicated family expectations, social challenges, love for science, and desire to be a scientist as I had four decades ago. Her future is uncertain, because her chosen academic path is not encouraged by those around her. We, as a society, must find ways to encourage, promote, enable, and give strength to those who want to follow their dreams, despite facing many challenges in their lives. Here are some things I learned on my career path that I hope might be helpful for others.


Subject(s)
Awards and Prizes , Career Choice , Family , Job Satisfaction , Microbiology , Science , History, 21st Century , Humans
19.
Proc Natl Acad Sci U S A ; 113(5): E529-37, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787847

ABSTRACT

Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins.


Subject(s)
Bacterial Proteins/metabolism , Biopolymers/metabolism , Cyclic AMP/metabolism , Neisseria meningitidis/enzymology , Nucleotidyltransferases/metabolism , DNA Gyrase/metabolism , Models, Molecular
20.
J Biol Chem ; 292(51): 21193-21204, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29089387

ABSTRACT

Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated. Here, we show that excessive AMPylation by a constitutively active FicE247G mutant is lethal in Drosophila This lethality is cell-autonomous, as directed expression of the mutant FicE247G to the fly eye does not kill the fly but rather results in a rough and reduced eye. Lethality and eye phenotypes are rescued by the deAMPylation activity of wild-type Fic. Consistent with Fic acting as a deAMPylation enzyme, its activity was both time- and concentration-dependent. Furthermore, Fic deAMPylation activity was sufficient to suppress the AMPylation activity mediated by the constitutively active FicE247G mutant in Drosophila S2 lysates. Further, we show that the dual enzymatic activity of Fic is, in part, regulated by Fic dimerization, as loss of this dimerization increases AMPylation and reduces deAMPylation of BiP.


Subject(s)
Adenosine Monophosphate/metabolism , Drosophila Proteins/metabolism , Heat-Shock Proteins/metabolism , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational , Amino Acid Substitution , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Cell Line , Dimerization , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Eye Abnormalities/veterinary , Female , Homozygote , Kinetics , Male , Mutation , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Organ Specificity , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Survival Analysis , Synthetic Lethal Mutations
SELECTION OF CITATIONS
SEARCH DETAIL