Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Eur J Neurol ; 29(12): 3580-3589, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36039401

ABSTRACT

BACKGROUND AND PURPOSE: The aim was to investigate the effect of APOE ε4 allele on cognitive decline in adAD. Presence of the APOE ε4 allele reduces age of symptom onset, increases disease progression, and lowers cognitive performance in sporadic Alzheimer's disease (AD), while the impact of the APOE ε4 allele in autosomal-dominant AD (adAD) is incompletely known. METHODS: Mutation carriers (MCs; n = 39) and non-carriers (NCs; n = 40) from six adAD families harbouring a mutation in the APP (28 MCs and 25 NCs) or the PSEN1 genes (11 MCs and 15 NCs) underwent repeated cognitive assessments. A timeline of disease course was defined as years to expected age of clinical onset (YECO) based on history of disease onset in each family. The MC and NC groups were comparable with regard to demographics and prevalence of the APOE ε4 allele. The relationship between cognitive decline and YECO, YECO2 , education, APOE, and APOE-by-YECO interaction was analysed using linear mixed-effects models. RESULTS: The trajectory of cognitive decline was significantly predicted by linear and quadratic YECO and education in MCs and was determined by age and education in NCs. Adding APOE ε4 allele (presence/absence) as a predictor did not change the results in the MC and NC groups. The outcome also remained the same for MCs and NCs after adding the APOE-by-YECO interaction as a predictor. Analyses of APP and PSEN1 MCs separately showed favourable APOE-by-YECO interaction in APP (less steep decline) and unfavourable interaction in PSEN1 (steeper decline), linked to the APOE ε4 allele. CONCLUSION: The APOE ε4 allele influences cognitive decline positively in APP and negatively in PSEN1 mutation carriers with adAD, indicating a possible antagonistic pleiotropy.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/epidemiology , Apolipoprotein E4/genetics , Cognitive Dysfunction/diagnosis , Disease Progression , Mutation , Presenilin-1/genetics
2.
Acta Pharmacol Sin ; 43(4): 850-861, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34272505

ABSTRACT

Amyloid-ß peptide (Aß) aggregation is the hallmark of Alzheimer's disease (AD). The imbalance between the production and clearance of Aß results in the accumulation and aggregation of Aß in the brain. Thus far, few drugs are available for AD treatment, but exercise has been recognized for its cognition-enhancing properties in AD patients. The underlying mechanisms remain unclear. Our recent study showed that long-term running exercise could activate the lysosomal function in the brains of mice. In this study, we investigated whether exercise could reduce Aß accumulation by activating lysosomal function in APP/PSEN1 transgenic mice. Started at the age of 5 months, the mice were trained with a running wheel at the speed of 18 r/min, 40 min/d, 6 d/week for 5 months, and were killed at the end of the 10th month, then brain tissue was collected for biochemical analyses. The cognitive ability was assessed in the 9th month. We showed that long-term exercise significantly mitigated cognitive dysfunction in AD mice, accompanied by the enhanced lysosomal function and the clearance of Aß in the brain. Exercise significantly promoted the nuclear translocation of transcription factor EB (TFEB), and increased the interaction between nuclear TFEB with AMPK-mediated acetyl-CoA synthetase 2, thus enhancing transcription of the genes associated with the biogenesis of lysosomes. Exercise also raised the levels of mature cathepsin D and cathepsin L, suggesting that more Aß peptides could be degraded in the activated lysosomes. This study demonstrates that exercise may improve the cognitive dysfunction of AD by enhancing lysosomal function.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/therapy , Disease Models, Animal , Humans , Lysosomes/metabolism , Mice , Mice, Transgenic , Presenilin-1/genetics
3.
J Neurochem ; 157(3): 656-665, 2021 05.
Article in English | MEDLINE | ID: mdl-32797675

ABSTRACT

Dopamine (DA) has important roles in learning, memory, and motivational processes and is highly susceptible to oxidation. In addition to dementia, Alzheimer's disease (AD) patients frequently exhibit decreased motivation, anhedonia, and sleep disorders, suggesting deficits in dopaminergic neurotransmission. Vitamin C (ascorbate, ASC) is a critical antioxidant in the brain and is often depleted in AD patients as a result of disease-related oxidative stress and dietary deficiencies. To probe the effects of ASC deficiency and AD pathology on the DAergic system, gulo-/- mice, which like humans depend on dietary ASC to maintain adequate tissue levels, were crossed with APP/PSEN1 mice and provided sufficient or depleted ASC supplementation from weaning until 12 months of age. Ex vivo fast-scan cyclic voltammetry showed that chronic ASC depletion and APP/PSEN1 genotype both independently decreased dopamine release in the nucleus accumbens, a hub for motivational behavior and reward, while DA clearance was similar across all groups. In striatal tissue containing nucleus accumbens, low ASC treatment led to decreased levels of DA and its metabolites 3,4-dihydroxyohenyl-acetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Decreased enzyme activity observed through lower pTH/TH ratio was driven by a cumulative effect of ASC depletion and APP/PSEN1 genotype. Together the data show that deficits in dopaminergic neurotransmission resulting from age and disease status are magnified in conditions of low ASC which decrease DA availability during synaptic transmission. Such deficits may contribute to the non-cognitive behavioral changes observed in AD including decreased motivation, anhedonia, and sleep disorders.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Presenilin-1/genetics , Vitamin B Deficiency/metabolism , Aging/metabolism , Animals , Ascorbic Acid/pharmacology , Dopamine/metabolism , Genotype , Mice , Mice, Inbred C57BL , Mice, Knockout , Motivation/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Tyrosine 3-Monooxygenase/metabolism
4.
Alzheimers Dement ; 17(2): 149-163, 2021 02.
Article in English | MEDLINE | ID: mdl-33314529

ABSTRACT

INTRODUCTION: Microglial TYROBP (DAP12) is a network hub and driver in sporadic late-onset Alzheimer's disease (AD). TYROBP is a cytoplasmic adaptor for TREM2 and other receptors, but little is known about its roles and actions in AD. Herein, we demonstrate that endogenous Tyrobp transcription is specifically increased in recruited microglia. METHODS: Using a novel transgenic mouse overexpressing TYROBP in microglia, we observed a decrease of the amyloid burden and an increase of TAU phosphorylation stoichiometry when crossed with APP/PSEN1 or MAPTP301S mice, respectively. Characterization of these mice revealed Tyrobp-related modulation of apolipoprotein E (Apoe) transcription. We also showed that Tyrobp and Apoe mRNAs were increased in Trem2-null microglia recruited around either amyloid beta deposits or a cortical stab injury. Conversely, microglial Apoe transcription was dramatically diminished when Tyrobp was absent. CONCLUSIONS: Our results provide evidence that TYROBP-APOE signaling does not require TREM2 and could be an initiating step in establishment of the disease-associated microglia (DAM) phenotype.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Membrane Glycoproteins/genetics , Mice, Transgenic , Microglia/metabolism , Receptors, Immunologic/genetics , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/physiology , Amyloidosis/prevention & control , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Humans , Mice , Mice, Knockout , Phosphorylation , Presenilin-1/physiology , Signal Transduction , tau Proteins/metabolism
5.
Acta Neuropathol ; 134(5): 769-788, 2017 11.
Article in English | MEDLINE | ID: mdl-28612290

ABSTRACT

Conventional genetic approaches and computational strategies have converged on immune-inflammatory pathways as key events in the pathogenesis of late onset sporadic Alzheimer's disease (LOAD). Mutations and/or differential expression of microglial specific receptors such as TREM2, CD33, and CR3 have been associated with strong increased risk for developing Alzheimer's disease (AD). DAP12 (DNAX-activating protein 12)/TYROBP, a molecule localized to microglia, is a direct partner/adapter for TREM2, CD33, and CR3. We and others have previously shown that TYROBP expression is increased in AD patients and in mouse models. Moreover, missense mutations in the coding region of TYROBP have recently been identified in some AD patients. These lines of evidence, along with computational analysis of LOAD brain gene expression, point to DAP12/TYROBP as a potential hub or driver protein in the pathogenesis of AD. Using a comprehensive panel of biochemical, physiological, behavioral, and transcriptomic assays, we evaluated in a mouse model the role of TYROBP in early stage AD. We crossed an Alzheimer's model mutant APP KM670/671NL /PSEN1 Δexon9 (APP/PSEN1) mouse model with Tyrobp -/- mice to generate AD model mice deficient or null for TYROBP (APP/PSEN1; Tyrobp +/- or APP/PSEN1; Tyrobp -/-). While we observed relatively minor effects of TYROBP deficiency on steady-state levels of amyloid-ß peptides, there was an effect of Tyrobp deficiency on the morphology of amyloid deposits resembling that reported by others for Trem2 -/- mice. We identified modulatory effects of TYROBP deficiency on the level of phosphorylation of TAU that was accompanied by a reduction in the severity of neuritic dystrophy. TYROBP deficiency also altered the expression of several AD related genes, including Cd33. Electrophysiological abnormalities and learning behavior deficits associated with APP/PSEN1 transgenes were greatly attenuated on a Tyrobp-null background. Some modulatory effects of TYROBP on Alzheimer's-related genes were only apparent on a background of mice with cerebral amyloidosis due to overexpression of mutant APP/PSEN1. These results suggest that reduction of TYROBP gene expression and/or protein levels could represent an immune-inflammatory therapeutic opportunity for modulating early stage LOAD, potentially leading to slowing or arresting the progression to full-blown clinical and pathological LOAD.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Brain/pathology , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Disease Models, Animal , Maze Learning/physiology , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Mutation , Phosphorylation , tau Proteins/metabolism
6.
Front Pharmacol ; 14: 1260838, 2023.
Article in English | MEDLINE | ID: mdl-38259283

ABSTRACT

Introduction: Depression is strongly associated with Alzheimer's disease (AD). Antidepressants are commonly used in patients before and after their diagnosis of AD. To date, the relationship between antidepressants and AD remains unclear. Methods: In our study, we administered sertraline or paroxetine to wild type (WT) and APPswe/PSEN1dE9 (APP/PSEN1) transgenic mouse models for up to 12 months. We quantified the drug concentrations using LC-MS/MS analysis and measured serum serotonin level using an ELISA assay. Additionally, we evaluated the amyloid burdens through thioflavin-S and Congo red stainings, and recognition memory using the novel object recognition test. Results: Our findings revealed that mice treated with paroxetine exhibited a significantly higher level of weight gain compared to the control group and increased mortality in APP/PSEN1 mice. After 12 months of antidepressant treatment, the sertraline level was measured at 289.8 ng/g for cerebellum, while the paroxetine level was 792.9 ng/g for cerebellum. Sertraline significantly increased thioflavin-S and Congo red depositions, along with gliosis, in both isocortex and hippocampus of APP/PSEN1 mice compared to the control group. Both antidepressants also led to a decreased recognition index in APP/PSEN1 mice. Conclusion: These findings suggest a potential role of sertraline in AD pathogenesis, emphasizing the need to reassess the use of these antidepressants in patients with AD.

7.
Neurol Res ; 43(7): 570-581, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33688799

ABSTRACT

BACKGROUND: The cerebellum's involvement in AD has been under-appreciated by historically labeling as a normal control in AD research. METHODS: We determined the involvement of the cerebellum in AD progression. Postmortem human and APPswe/PSEN1dE9 mice cerebellums were used to assess the cerebellar Purkinje cells (PC) by immunohistochemistry. The locomotor and spatial cognitive functions were assessed in 4- to 5-month-old APPswe/PSEN1dE9 mice. Aß plaque and APP processing were determined in APPswe/PSEN1dE9 mice at different age groups by immunohistochemistry and Western blot. RESULTS: We observed loss of cerebellar PC in mild cognitive impairment and AD patients compared with cognitively normal controls. A strong trend towards PC loss was found in AD mice as early as 5 months. Impairment of balance beam and rotorod performance, but no spatial learning and memory dysfunction was observed in AD mice at 4-5 months. Aß plaque in the cerebral cortex was evidenced in AD mice at 2 months and dramatically increased at 6 months. Less and smaller Aß plaques were observed in the cerebellum than in the cerebrum of AD mice. Similar intracellular APP staining was observed in the cerebellum and cerebrum of AD mice at 2 to 10 months. Similar expression of full-length APP and C-terminal fragments were indicated in the cerebrum and cerebellum of AD mice during aging. DISCUSSION: Our study in post-mortem human brains and transgenic AD mice provided neuropathological and functional evidence that cerebellar dysfunction may occur at the early stage of AD and likely independent of Aß plaque.


Subject(s)
Alzheimer Disease/metabolism , Brain/pathology , Plaque, Amyloid/metabolism , Purkinje Cells/pathology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Cognition/physiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Humans , Mice, Transgenic , Plaque, Amyloid/pathology
8.
Mol Neurodegener ; 16(1): 15, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33685483

ABSTRACT

BACKGROUND: Emerging evidence indicates that impaired mitophagy-mediated clearance of defective mitochondria is a critical event in Alzheimer's disease (AD) pathogenesis. Amyloid-beta (Aß) metabolism and the microtubule-associated protein tau have been reported to regulate key components of the mitophagy machinery. However, the mechanisms that lead to mitophagy dysfunction in AD are not fully deciphered. We have previously shown that intraneuronal cholesterol accumulation can disrupt the autophagy flux, resulting in low Aß clearance. In this study, we examine the impact of neuronal cholesterol changes on mitochondrial removal by autophagy. METHODS: Regulation of PINK1-parkin-mediated mitophagy was investigated in conditions of acute (in vitro) and chronic (in vivo) high cholesterol loading using cholesterol-enriched SH-SY5Y cells, cultured primary neurons from transgenic mice overexpressing active SREBF2 (sterol regulatory element binding factor 2), and mice of increasing age that express the amyloid precursor protein with the familial Alzheimer Swedish mutation (Mo/HuAPP695swe) and mutant presenilin 1 (PS1-dE9) together with active SREBF2. RESULTS: In cholesterol-enriched SH-SY5Y cells and cultured primary neurons, high intracellular cholesterol levels stimulated mitochondrial PINK1 accumulation and mitophagosomes formation triggered by Aß while impairing lysosomal-mediated clearance. Antioxidant recovery of cholesterol-induced mitochondrial glutathione (GSH) depletion prevented mitophagosomes formation indicating mitochondrial ROS involvement. Interestingly, when brain cholesterol accumulated chronically in aged APP-PSEN1-SREBF2 mice the mitophagy flux was affected at the early steps of the pathway, with defective recruitment of the key autophagy receptor optineurin (OPTN). Sustained cholesterol-induced alterations in APP-PSEN1-SREBF2 mice promoted an age-dependent accumulation of OPTN into HDAC6-positive aggresomes, which disappeared after in vivo treatment with GSH ethyl ester (GSHee). The analyses in post-mortem brain tissues from individuals with AD confirmed these findings, showing OPTN in aggresome-like structures that correlated with high mitochondrial cholesterol levels in late AD stages. CONCLUSIONS: Our data demonstrate that accumulation of intracellular cholesterol reduces the clearance of defective mitochondria and suggest recovery of the cholesterol homeostasis and the mitochondrial scavenging of ROS as potential therapeutic targets for AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Autophagy/physiology , Lysosomes/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cholesterol/metabolism , Mice, Transgenic , Mitochondria/metabolism , Neurons/metabolism , Ubiquitin-Protein Ligases
9.
Front Neurosci ; 15: 700729, 2021.
Article in English | MEDLINE | ID: mdl-34366780

ABSTRACT

Increased blood-brain barrier (BBB) permeability and extensive neuronal changes have been described earlier in both healthy and pathological aging like apolipoprotein B-100 (APOB-100) and amyloid precursor protein (APP)-presenilin-1 (PSEN1) transgenic mouse models. APOB-100 hypertriglyceridemic model is a useful tool to study the link between cerebrovascular pathology and neurodegeneration, while APP-PSEN1 humanized mouse is a model of Alzheimer's disease. The aim of the current study was to characterize the inflammatory changes in the brain with healthy aging and in neurodegeneration. Also, the cerebro-morphological and cognitive alterations have been investigated. The nose-to-brain delivery of a P-glycoprotein substrate model drug (quinidine) was monitored in the disease models and compared with the age-matched controls. Our results revealed an inflammatory balance shift in both the healthy aged and neurodegenerative models. In normal aging monocyte chemoattractant protein-1, stem cell factor and Rantes were highly upregulated indicating a stimulated leukocyte status. In APOB-100 mice, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), and interleukin-17A (IL-17A) were induced (vascular reaction), while in APP-PSEN1 mice resistin, IL-17A and GM-CSF were mostly upregulated. The nasal drug absorption was similar in the brain and blood indicating the molecular bypass of the BBB. The learning and memory tests showed no difference in the cognitive performance of healthy aged and young animals. Based on these results, it can be concluded that various markers of chronic inflammation are present in healthy aged and diseased animals. In APOB-100 mice, a cerebro-ventricular dilation can also be observed. For development of proper anti-aging and neuroprotective compounds, further studies focusing on the above inflammatory targets are suggested.

10.
Behav Brain Res ; 264: 34-42, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24508240

ABSTRACT

The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (-/-) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 and SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-h interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9-month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling.


Subject(s)
Antioxidants/administration & dosage , Ascorbic Acid/administration & dosage , Memory Disorders/drug therapy , Memory Disorders/genetics , Space Perception/drug effects , Administration, Intravenous , Age Factors , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Ascorbic Acid/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Maze Learning/drug effects , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurotransmitter Agents/metabolism , Peptide Fragments/metabolism , Presenilin-1/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL