Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
EMBO J ; 42(13): e112333, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37183585

ABSTRACT

Enteric bacteria use up to 15% of their cellular energy for ammonium assimilation via glutamine synthetase (GS)/glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) in response to varying ammonium availability. However, the sensory mechanisms for effective and appropriate coordination between carbon metabolism and ammonium assimilation have not been fully elucidated. Here, we report that in Salmonella enterica, carbon metabolism coordinates the activities of GS/GDH via functionally reversible protein lysine acetylation. Glucose promotes Pat acetyltransferase-mediated acetylation and activation of adenylylated GS. Simultaneously, glucose induces GDH acetylation to inactivate the enzyme by impeding its catalytic centre, which is reversed upon GDH deacetylation by deacetylase CobB. Molecular dynamics (MD) simulations indicate that adenylylation is required for acetylation-dependent activation of GS. We show that acetylation and deacetylation occur within minutes of "glucose shock" to promptly adapt to ammonium/carbon variation and finely balance glutamine/glutamate synthesis. Finally, in a mouse infection model, reduced S. enterica growth caused by the expression of adenylylation-mimetic GS is rescued by acetylation-mimicking mutations. Thus, glucose-driven acetylation integrates signals from ammonium assimilation and carbon metabolism to fine-tune bacterial growth control.


Subject(s)
Ammonium Compounds , Salmonella enterica , Animals , Mice , Ammonium Compounds/metabolism , Acetylation , Carbon/metabolism , Glucose , Glutamate Dehydrogenase/metabolism , Nitrogen/metabolism
2.
Plant J ; 117(3): 786-804, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955989

ABSTRACT

In natural and agricultural situations, ammonium ( NH 4 + ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known as NH 4 + toxicity. Nitrate ( NO 3 - ) has long been recognized to reduce NH 4 + toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to high NH 4 + . Here, we found that NO 3 - can mitigate NH 4 + toxicity by balancing rhizosphere and intracellular pH and accelerating ammonium assimilation in B. napus. NO 3 - increased the uptake of NO 3 - and NH 4 + under high NH 4 + circumstances by triggering the expression of NO 3 - and NH 4 + transporters, while NO 3 - and H+ efflux from the cytoplasm to the apoplast was enhanced by promoting the expression of NO 3 - efflux transporters and genes encoding plasma membrane H+ -ATPase. In addition, NO 3 - increased pH in the cytosol, vacuole, and rhizosphere, and down-regulated genes induced by acid stress. Root glutamine synthetase (GS) activity was elevated by NO 3 - under high NH 4 + conditions to enhance the assimilation of NH 4 + into amino acids, thereby reducing NH 4 + accumulation and translocation to shoot in rapeseed. In addition, root GS activity was highly dependent on the environmental pH. NO 3 - might induce metabolites involved in amino acid biosynthesis and malate metabolism in the tricarboxylic acid cycle, and inhibit phenylpropanoid metabolism to mitigate NH 4 + toxicity. Collectively, our results indicate that NO 3 - balances both rhizosphere and intracellular pH via effective NO 3 - transmembrane cycling, accelerates NH 4 + assimilation, and up-regulates malate metabolism to mitigate NH 4 + toxicity in oilseed rape.


Subject(s)
Ammonium Compounds , Brassica napus , Ammonium Compounds/metabolism , Nitrates/metabolism , Brassica napus/genetics , Rhizosphere , Malates/metabolism , Nitrogen/metabolism , Hydrogen-Ion Concentration
3.
J Environ Manage ; 353: 120116, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38280251

ABSTRACT

Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.


Subject(s)
Ammonium Compounds , Water Purification , Sewage , Wastewater , Waste Disposal, Fluid/methods , Denitrification , Phosphorus , Bioreactors , Nitrification , Nutrients , Nitrogen
4.
BMC Genomics ; 24(1): 550, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723472

ABSTRACT

BACKGROUND: Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs. RESULTS: In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of Bacillus aryabhattai NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH4)2SO4. Whole-genome analysis showed that B. aryabhattai NM1-A2 contained various genes related to ammonium transporter (amt), ammonium assimilation (i.e., gdhA, gltB, and gltD), organic acid synthesis (i.e., ackA, fdhD, and idh), and phosphate transport (i.e., pstB and pstS). Transcriptome data showed that the expression levels of amt, gltB, gltD, ackA and idh were downregulated, while gdhA and fdhD were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress. CONCLUSIONS: The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.


Subject(s)
Phosphorus , Protons , Phosphates , Acetic Acid
5.
Appl Environ Microbiol ; 89(1): e0175322, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36625594

ABSTRACT

Clostridium thermocellum is a cellulolytic thermophile that is considered for the consolidated bioprocessing of lignocellulose to ethanol. Improvements in ethanol yield are required for industrial implementation, but the incompletely understood causes of amino acid secretion impede progress. In this study, amino acid secretion was investigated via gene deletions in ammonium-regulated, nicotinamide adenine dinucleotide phosphate (NADPH)-supplying and NADPH-consuming pathways as well as via physiological characterization in cellobiose-limited or ammonium-limited chemostats. First, the contribution of the NADPH-supplying malate shunt was studied with strains using either the NADPH-yielding malate shunt (Δppdk) or a redox-independent conversion of PEP to pyruvate (Δppdk ΔmalE::Peno-pyk). In the latter, branched-chain amino acids, especially valine, were significantly reduced, whereas the ethanol yield increased from 46 to 60%, suggesting that the secretion of these amino acids balances the NADPH surplus from the malate shunt. The unchanged amino acid secretion in Δppdk falsified a previous hypothesis on an ammonium-regulated PEP-to-pyruvate flux redistribution. The possible involvement of another NADPH-supplier, namely, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (nfnAB), was also excluded. Finally, the deletion of glutamate synthase (gogat) in ammonium assimilation resulted in the upregulation of NADPH-linked glutamate dehydrogenase activity and decreased amino acid yields. Since gogat in C. thermocellum is putatively annotated as ferredoxin-linked, a claim which is supported by the product redistribution observed in this study, this deletion likely replaced ferredoxin with NADPH in ammonium assimilation. Overall, these findings indicate that a need to reoxidize NADPH is driving the observed amino acid secretion, likely at the expense of the NADH needed for ethanol formation. This suggests that metabolic engineering strategies that simplify the redox metabolism and ammonium assimilation can contribute to increased ethanol yields. IMPORTANCE Improving the ethanol yield of C. thermocellum is important for the industrial implementation of this microorganism in consolidated bioprocessing. A central role of NADPH in driving amino acid byproduct formation was demonstrated by eliminating the NADPH-supplying malate shunt and separately by changing the cofactor specificity in ammonium assimilation. With amino acid secretion diverting carbon and electrons away from ethanol, these insights are important for further metabolic engineering to reach industrial requirements on ethanol yield. This study also provides chemostat data that are relevant for training genome-scale metabolic models and for improving the validity of their predictions, especially considering the reduced degree-of-freedom in the redox metabolism of the strains generated here. In addition, this study advances the fundamental understanding on the mechanisms underlying amino acid secretion in cellulolytic Clostridia as well as on the regulation and cofactor specificity in ammonium assimilation. Together, these efforts aid in the development of C. thermocellum for the sustainable consolidated bioprocessing of lignocellulose to ethanol with minimal pretreatment.


Subject(s)
Amino Acids , Ammonium Compounds , Clostridium thermocellum , NADP , Amino Acids/biosynthesis , Amino Acids/metabolism , Ammonium Compounds/metabolism , Clostridium thermocellum/genetics , Clostridium thermocellum/metabolism , Ethanol/metabolism , Ferredoxins/metabolism , Malates/metabolism , NAD/metabolism , NADP/metabolism , Pyruvates/metabolism , Oxidation-Reduction
6.
Plant J ; 107(6): 1616-1630, 2021 09.
Article in English | MEDLINE | ID: mdl-34216173

ABSTRACT

Glutamine is a product of ammonium (NH4+ ) assimilation catalyzed by glutamine synthetase (GS) and glutamate synthase (GOGAT). The growth of NH4+ -preferring paddy rice (Oryza sativa L.) depends on root NH4+ assimilation and the subsequent root-to-shoot allocation of glutamine; however, little is known about the mechanism of glutamine storage in roots. Here, using transcriptome and reverse genetics analyses, we show that the rice amino acid transporter-like 6 (OsATL6) protein exports glutamine to the root vacuoles under NH4+ -replete conditions. OsATL6 was expressed, along with OsGS1;2 and OsNADH-GOGAT1, in wild-type (WT) roots fed with sufficient NH4 Cl, and was induced by glutamine treatment. We generated two independent Tos17 retrotransposon insertion mutants showing reduced OsATL6 expression to determine the function of OsATL6. Compared with segregants lacking the Tos17 insertion, the OsATL6 knock-down mutant seedlings exhibited lower root glutamine content but higher glutamine concentration in the xylem sap and greater shoot growth under NH4+ -replete conditions. The transient expression of monomeric red fluorescent protein-fused OsATL6 in onion epidermal cells confirmed the tonoplast localization of OsATL6. When OsATL6 was expressed in Xenopus laevis oocytes, glutamine efflux from the cell into the acidic bath solution increased. Under sufficient NH4+ supply, OsATL6 transiently accumulated in sclerenchyma and pericycle cells, which are located adjacent to the Casparian strip, thus obstructing the apoplastic solute path, and in vascular parenchyma cells of WT roots before the peak accumulation of GS1;2 and NADH-GOGAT1 occurred. These findings suggest that OsATL6 temporarily stores excess glutamine, produced by NH4+ assimilation, in root vacuoles before it can be translocated to the shoot.


Subject(s)
Amino Acid Transport Systems/metabolism , Glutamine/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Amino Acid Transport Systems/genetics , Ammonia/metabolism , Ammonium Chloride/pharmacology , Animals , Female , Gene Expression Regulation, Plant , Homeostasis , Mutation , Onions/cytology , Onions/genetics , Oocytes/metabolism , Oryza/drug effects , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Roots/cytology , Plant Roots/drug effects , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plants, Genetically Modified , Vacuoles/metabolism , Xenopus laevis
7.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34878378

ABSTRACT

A polyphasic taxonomic approach was used to characterize a Gram-stain-negative bacterium, designated strain CC-CFT640T, isolated from vineyard soil sampled in Taiwan. Cells of strain CC-CFT640T were aerobic, non-motile, nitrate-reducing rods. Test results were positive for catalase, oxidase and proteinase activities. Optimal growth occurred at 30 °Ð¡ and pH 7. Strain CC-CFT640T showed highest 16S rRNA gene sequence similarity to members of the genus Enhydrobacter (90.0 %, n=1) followed by Hypericibacter (89.4-90.0 %, n=2), Reyranella (88.8-89.8 %, n=5) and Nitrospirillum (89.2-89.4 %, n=2), and formed a distinct phyletic lineage distantly associated with the clade that predominately accommodated Reynerella species. The DNA G+C composition of the genome (2.1 Mb) was 67.9 mol%. Genes involved in the reduction of nitrate to nitrite, nitric oxide and nitrous oxide were found. In addition, genes encoding dissimilatory nitrate reduction to ammonia, ammonium transport and ammonium assimilation were also detected. Average nucleotide identity values were 73.3 % (n=1), 74.0-74.6 % (n=2), 67.5-68.3 % (n=2) when compared within the type strains of the genera Enhydrobacter, Reyranella and Niveispirillum, respectively. The dominant cellular fatty acids (>5 %) included C16 : 0, iso-C17 : 1 ω10c, C19 : 0 cyclo ω8c, C18 : 1 2-OH and C18 : 1 ω7c/C18 : 1 ω6c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminolipids, three unidentified phospholipids and an unidentified aminophospholipid. The major respiratory quinone was ubiquinone 10 and the major polyamine was spermidine. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequencing, digital DNA-DNA hybridization, average nucleotide identity and phylogenomic placement, strain CC-CFT640T is considered to represent a novel genus and species of the family Rhodospirillaceae, for which the name Vineibacter terrae gen. nov., sp. nov. is proposed. The type strain is CC-CFT640T (=BCRC 81219T=JCM 33507T).


Subject(s)
Alphaproteobacteria/classification , Ammonium Compounds , Nitrates , Phylogeny , Soil Microbiology , Alphaproteobacteria/isolation & purification , Ammonium Compounds/metabolism , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Farms , Fatty Acids/chemistry , Nitrates/metabolism , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/chemistry , Taiwan , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Vitis
8.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681741

ABSTRACT

Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is closely related to nitrogen remobilization. However, how GS isoforms participate in nitrogen remobilization remains unclear. Here, the spatiotemporal expression of the TaGS gene family after anthesis was investigated, and the results showed that TaGS1;1 was mainly encoded by TaGS1;1-6A, while the other isozymes were mainly encoded by TaGS localized on the A and D subgenomes. TaGS1;2-4A/4D had the highest expression level, especially in rachis and peduncle. Furthermore, immunofluorescence showed TaGS1;2 was located in the phloem of rachis and peduncle. GUS (ß-glucuronidase) staining confirmed that ProTaGS1;2-4A/4D::GUS activity was mainly present in the vascular system of leaves, roots, and petal of Arabidopsis. Ureides, an important transport form of nitrogen, were mainly synthesized in flag leaves and transported to grains through the phloem of peduncle and rachis during grain filling. TaAAH, which encodes the enzyme that degrades ureides to release NH4+, had a higher expression in rachis and peduncle and was synchronized with the increase in NH4+ concentration in phloem, indicating that NH4+ in phloem is from ureide degradation. Taking the above into account, TaGS1;2, which is highly expressed in the phloem of peduncle and rachis, may participate in N remobilization by assimilating NH4+ released from ureide degradation.


Subject(s)
Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Nitrogen/metabolism , Plant Proteins/metabolism , Triticum/metabolism , Ammonia/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phloem/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Triticum/genetics
9.
Int J Mol Sci ; 22(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806722

ABSTRACT

Auxins play an essential role in regulating plant growth and adaptation to abiotic stresses, such as nutrient stress. Our current understanding of auxins is based almost entirely on the results of research on the eudicot Arabidopsis thaliana, however, the role of the rice PIN-FORMED (PIN) auxin efflux carriers in the regulation of the ammonium-dependent response remains elusive. Here, we analyzed the expression patterns in various organs/tissues and the ammonium-dependent response of rice PIN-family genes (OsPIN genes) via qRT-PCR, and attempted to elucidate the relationship between nitrogen (N) utilization and auxin transporters. To investigate auxin distribution under ammonium-dependent response after N deficiency in rice roots, we used DR5::VENUS reporter lines that retained a highly active synthetic auxin response. Subsequently, we confirmed that ammonium supplementation reduced the DR5::VENUS signal compared with that observed in the N-deficient condition. These results are consistent with the decreased expression patterns of almost all OsPIN genes in the presence of the ammonium-dependent response to N deficiency. Furthermore, the ospin1b mutant showed an insensitive phenotype in the ammonium-dependent response to N deficiency and disturbances in the regulation of several N-assimilation genes. These molecular and physiological findings suggest that auxin is involved in the ammonium assimilation process of rice, which is a model crop plant.


Subject(s)
Indoleacetic Acids/metabolism , Oryza/physiology , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Ammonium Compounds/metabolism , Biological Transport , Fertilizers , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Mutation , Nitrogen/metabolism , Organ Specificity , Plant Development/genetics , Plant Roots/growth & development , Quantitative Trait, Heritable , Seedlings/genetics , Seedlings/growth & development
10.
Proc Biol Sci ; 287(1929): 20200620, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32546098

ABSTRACT

The symbiotic planktonic foraminifera Orbulina universa inhabits open ocean oligotrophic ecosystems where dissolved nutrients are scarce and often limit biological productivity. It has previously been proposed that O. universa meets its nitrogen (N) requirements by preying on zooplankton, and that its symbiotic dinoflagellates recycle metabolic 'waste ammonium' for their N pool. However, these conclusions were derived from bulk 15N-enrichment experiments and model calculations, and our understanding of N assimilation and exchange between the foraminifer host cell and its symbiotic dinoflagellates remains poorly constrained. Here, we present data from pulse-chase experiments with 13C-enriched inorganic carbon, 15N-nitrate, and 15N-ammonium, as well as a 13C- and 15N- enriched heterotrophic food source, followed by TEM (transmission electron microscopy) coupled to NanoSIMS (nanoscale secondary ion mass spectrometry) isotopic imaging to visualize and quantify C and N assimilation and translocation in the symbiotic system. High levels of 15N-labelling were observed in the dinoflagellates and in foraminiferal organelles and cytoplasm after incubation with 15N-ammonium, indicating efficient ammonium assimilation. Only weak 15N-assimilation was observed after incubation with 15N-nitrate. Feeding foraminifers with 13C- and 15N-labelled food resulted in dinoflagellates that were labelled with 15N, thereby confirming the transfer of 15N-compounds from the digestive vacuoles of the foraminifer to the symbiotic dinoflagellates, likely through recycling of ammonium. These observations are important for N isotope-based palaeoceanographic reconstructions, as they show that δ15N values recorded in the organic matrix in symbiotic species likely reflect ammonium recycling rather than alternative N sources, such as nitrates.


Subject(s)
Ammonium Compounds/metabolism , Dinoflagellida/physiology , Foraminifera/physiology , Animals , Carbon/metabolism , Ecosystem , Nitrogen/metabolism , Plankton , Symbiosis
11.
J Exp Bot ; 71(15): 4562-4577, 2020 07 25.
Article in English | MEDLINE | ID: mdl-32064504

ABSTRACT

Ammonium (NH4+) is one of the principal nitrogen (N) sources in soils, but is typically toxic already at intermediate concentrations. The phytohormone abscisic acid (ABA) plays a pivotal role in responses to environmental stresses. However, the role of ABA under high-NH4+ stress in rice (Oryza sativa L.) is only marginally understood. Here, we report that elevated NH4+ can significantly accelerate tissue ABA accumulation. Mutants with high (Osaba8ox) and low levels of ABA (Osphs3-1) exhibit elevated tolerance or sensitivity to high-NH4+ stress, respectively. Furthermore, ABA can decrease NH4+-induced oxidative damage and tissue NH4+ accumulation by enhancing antioxidant and glutamine synthetase (GS)/glutamate synthetasae (GOGAT) enzyme activities. Using RNA sequencing and quantitative real-time PCR approaches, we ascertain that two genes, OsSAPK9 and OsbZIP20, are induced both by high NH4+ and by ABA. Our data indicate that OsSAPK9 interacts with OsbZIP20, and can phosphorylate OsbZIP20 and activate its function. When OsSAPK9 or OsbZIP20 are knocked out in rice, ABA-mediated antioxidant and GS/GOGAT activity enhancement under high-NH4+ stress disappear, and the two mutants are more sensitive to high-NH4+ stress compared with their wild types. Taken together, our results suggest that ABA plays a positive role in regulating the OsSAPK9-OsbZIP20 pathway in rice to increase tolerance to high-NH4+ stress.


Subject(s)
Ammonium Compounds , Oryza , Abscisic Acid , Glutamate-Ammonia Ligase/genetics , Oryza/genetics , Reactive Oxygen Species
12.
Extremophiles ; 24(3): 433-446, 2020 May.
Article in English | MEDLINE | ID: mdl-32296946

ABSTRACT

Glutamine synthetase is an essential enzyme in ammonium assimilation and glutamine biosynthesis. The Haloferax mediterranei genome has two other glnA-type genes (glnA2 and glnA3) in addition to the glutamine synthetase gene glnA. To determine whether the glnA2 and glnA3 genes can replace glnA in nitrogen metabolism, we generated deletion mutants of glnA. The glnA deletion mutants could not be generated in a medium without glutamine, and thus, glnA is an essential gene in H. mediterranei. The glnA deletion mutant was achieved by adding 40 mM glutamine to the selective medium. This conditional HM26-ΔglnA mutant was characterised with different approaches in the presence of distinct nitrogen sources and nitrogen starvation. Transcriptomic analysis was performed to compare the expression profiles of the strains HM26-ΔglnA and HM26 under different growth conditions. The glnA deletion did not affect the expression of glnA2, glnA3 and nitrogen assimilation genes under nitrogen starvation. Moreover, the results showed that glnA, glnA2 and glnA3 were not expressed under the same conditions. These results indicated that glnA is an essential gene for H. mediterranei and, therefore, glnA2 and glnA3 cannot replace glnA in the conditions analysed.


Subject(s)
Haloferax mediterranei , Gene Conversion , Glutamate-Ammonia Ligase , Glutamine
13.
Environ Res ; 191: 110059, 2020 12.
Article in English | MEDLINE | ID: mdl-32805244

ABSTRACT

Ideonella sp. TH17, an autotrophic hydrogen-oxidizing bacterium (HOB), was successfully enriched and isolated from activated sludge in a domestic wastewater treatment plant (WWTP). Batch experiments were conducted to identify the cell growth and ammonium (NH4+-N) removal, and to verify the pathways of nitrogen utilization under different conditions. At a representative NH4+-N concentration of 100 mg/L in domestic wastewater, it was the first time that a HOB strain achieved a nearly 100% ammonium removal. More than 90% of NH4+-N was assimilated to biomass nitrogen by strain TH17. Only a little of N2 (<10% of initial NH4+-N) was detected without N2O emission in aerobic denitrification process. Autotrophic NH4+-N assimilation contributed predominantly to biomass nitrogen production, supplemented by assimilatory nitrate (NO3--N) reduction under aerobic conditions. A total of 17 amino acids, accounting for 54.25 ± 1.98% of the dry biomass, were detected in the bacterial biomass harvested at 72 h. These results demonstrated that the newly isolated strain TH17 was capable of removing NH4+-N and recovering nutrients from wastewater efficiently. A new solution was thus provided by this HOB strain for ammonium treatment in sustainable WWTPs of future.


Subject(s)
Ammonium Compounds , Bioreactors , Denitrification , Hydrogen , Nitrogen , Oxidation-Reduction , Th17 Cells , Wastewater
14.
Microb Cell Fact ; 17(1): 170, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30384856

ABSTRACT

Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed  pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.


Subject(s)
Genetic Pleiotropy , Glutamate Dehydrogenase/metabolism , Saccharomyces cerevisiae/enzymology , Actin Cytoskeleton/metabolism , Endocytosis , gamma-Aminobutyric Acid/metabolism
15.
Appl Environ Microbiol ; 83(13)2017 07 01.
Article in English | MEDLINE | ID: mdl-28432097

ABSTRACT

Overcoming the inhibitory effects of excess environmental ammonium on nitrogenase synthesis or activity and preventing ammonium assimilation have been considered strategies to increase the amount of fixed nitrogen transferred from bacterial to plant partners in associative or symbiotic plant-diazotroph relationships. The GlnE adenylyltransferase/adenylyl-removing enzyme catalyzes reversible adenylylation of glutamine synthetase (GS), thereby affecting the posttranslational regulation of ammonium assimilation that is critical for the appropriate coordination of carbon and nitrogen assimilation. Since GS is key to the sole ammonium assimilation pathway of Azotobacter vinelandii, attempts to obtain deletion mutants in the gene encoding GS (glnA) have been unsuccessful. We have generated a glnE deletion strain, thus preventing posttranslational regulation of GS. The resultant strain containing constitutively active GS is unable to grow well on ammonium-containing medium, as previously observed in other organisms, and can be cultured only at low ammonium concentrations. This phenotype is caused by the lack of downregulation of GS activity, resulting in high intracellular glutamine levels and severe perturbation of the ratio of glutamine to 2-oxoglutarate under excess-nitrogen conditions. Interestingly, the mutant can grow diazotrophically at rates comparable to those of the wild type. This observation suggests that the control of nitrogen fixation-specific gene expression at the transcriptional level in response to 2-oxoglutarate via NifA is sufficiently tight to alone regulate ammonium production at levels appropriate for optimal carbon and nitrogen balance.IMPORTANCE In this study, the characterization of the glnE knockout mutant of the model diazotroph Azotobacter vinelandii provides significant insights into the integration of the regulatory mechanisms of ammonium production and ammonium assimilation during nitrogen fixation. The work reveals the profound fidelity of nitrogen fixation regulation in providing ammonium sufficient for maximal growth but constraining energetically costly excess production. A detailed fundamental understanding of the interplay between the regulation of ammonium production and assimilation is of paramount importance in exploiting existing and potentially engineering new plant-diazotroph relationships for improved agriculture.


Subject(s)
Azotobacter vinelandii/enzymology , Bacterial Proteins/genetics , Gene Deletion , Glutamate-Ammonia Ligase/genetics , Nitrogen Fixation , Ammonium Compounds/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/growth & development , Azotobacter vinelandii/physiology , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glutamate-Ammonia Ligase/metabolism
16.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1455-1469, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28847524

ABSTRACT

Sulfate-reducing bacteria (SRB) are a diverse group of anaerobic microorganisms that obtain their energy from dissimilatory sulfate reduction. Some SRB species have high respiratory versatility due to the possible use of alternative electron acceptors. A good example is Desulfovibrio desulfuricans ATCC 27774, which grows in the presence of nitrate (end product: ammonium) with higher rates and yields to those observed in sulfate containing medium (end product: sulfide). In this work, the mechanisms supporting the respiratory versatility of D. desulfuricans were unraveled through the analysis of the proteome of the bacterium under different experimental conditions. The most remarkable difference in the two-dimensional gel electrophoresis maps is the high number of spots exclusively represented in the nitrate medium. Most of the proteins with increase abundance are involved in the energy metabolism and the biosynthesis of amino acids (or proteins), especially those participating in ammonium assimilation processes. qPCR analysis performed during different stages of the bacterium's growth showed that the genes involved in nitrate and nitrite reduction (napA and nrfA, respectively) have different expressions profiles: while napA did not vary significantly, nrfA was highly expressed at a 6h time point. Nitrite levels measured along the growth curve revealed a peak at 3h. Thus, the initial consumption of nitrate and concomitant production of nitrite must induce nrfA expression. The activation of alternative mechanisms for energy production, aside several N-assimilation metabolisms and detoxification processes, solves potential survival problems in adapting to different environments and contributes to higher bacterial growth rates.


Subject(s)
Bacterial Proteins/genetics , Desulfovibrio desulfuricans/genetics , Electrons , Gene Expression Regulation, Bacterial , Nitrate Reductase/genetics , Nitrite Reductases/genetics , Anaerobiosis/genetics , Bacterial Proteins/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Desulfovibrio desulfuricans/drug effects , Desulfovibrio desulfuricans/growth & development , Desulfovibrio desulfuricans/metabolism , Electron Transport , Electrophoresis, Gel, Two-Dimensional , Gene Ontology , Metabolic Networks and Pathways , Molecular Sequence Annotation , Nitrate Reductase/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Nitrite Reductases/metabolism , Oxidation-Reduction , Proteome/genetics , Proteome/metabolism , Sulfates/metabolism , Sulfates/pharmacology
17.
J Exp Bot ; 68(10): 2501-2512, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28007951

ABSTRACT

Nitrogen (N) availability is a major factor determining plant growth and productivity. Plants acquire inorganic N from the soil, mainly in the form of nitrate and ammonium. To date, researchers have focused on these N sources, and demonstrated that plants exhibit elaborate responses at both physiological and morphological levels. Mixtures of nitrate and ammonium are beneficial in terms of plant growth, as compared to nitrate or ammonium alone, and therefore synergistic responses to both N sources are predicted at different steps ranging from acquisition to assimilation. In this review, we summarize interactions between nitrate and ammonium with respect to uptake, allocation, assimilation, and signaling. Given that cultivated land often contains both nitrate and ammonium, a better understanding of the synergism between these N sources should help to identify targets with the potential to improve crop productivity.


Subject(s)
Ammonium Compounds/metabolism , Crops, Agricultural/physiology , Nitrates/metabolism , Plant Physiological Phenomena , Biological Transport , Crop Production , Signal Transduction
18.
Antonie Van Leeuwenhoek ; 110(12): 1613-1626, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28726125

ABSTRACT

Until recently, it has not been generally known that some bacteria can contain the gene inventory for both denitrification and dissimilatory nitrate (NO3-)/nitrite (NO2-) reduction to ammonium (NH4+) (DNRA). Detailed studies of these microorganisms could shed light on the differentiating environmental drivers of both processes without interference of organism-specific variation. Genome analysis of Bacillus azotoformans LMG 9581T shows a remarkable redundancy of dissimilatory nitrogen reduction, with multiple copies of each denitrification gene as well as DNRA genes nrfAH, but a reduced capacity for nitrogen assimilation, with no nas operon nor amtB gene. Here, we explored nitrogen assimilation in detail using growth experiments in media with different organic and inorganic nitrogen sources at different concentrations. Monitoring of growth, NO3- NO2-, NH4+ concentration and N2O production revealed that B. azotoformans LMG 9581T could not grow with NH4+ as sole nitrogen source and confirmed the hypothesis of reduced nitrogen assimilation pathways. However, NH4+ could be assimilated and contributed up to 50% of biomass if yeast extract was also provided. NH4+ also had a significant but concentration-dependent influence on growth rate. The mechanisms behind these observations remain to be resolved but hypotheses for this deficiency in nitrogen assimilation are discussed. In addition, in all growth conditions tested a denitrification phenotype was observed, with all supplied NO3- converted to nitrous oxide (N2O).


Subject(s)
Bacillus/classification , Bacillus/metabolism , Nitrogen/metabolism , Ammonium Compounds/metabolism , Bacillus/genetics , Energy Metabolism , Genes, Bacterial , Genomics/methods , Metabolic Networks and Pathways/genetics , Nitrates/metabolism , Nitrites/metabolism , Nitrous Oxide/metabolism
19.
J Ind Microbiol Biotechnol ; 44(3): 443-451, 2017 03.
Article in English | MEDLINE | ID: mdl-28120129

ABSTRACT

There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l-1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.


Subject(s)
Ammonia/metabolism , Arginine/biosynthesis , Corynebacterium/metabolism , Aspartic Acid/metabolism , Batch Cell Culture Techniques , Corynebacterium/genetics , Culture Media/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Industrial Microbiology , Metabolic Engineering
20.
Plant Cell Physiol ; 57(4): 675-89, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26628609

ABSTRACT

Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.


Subject(s)
Arabidopsis/metabolism , Asparagine/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Asparaginase/genetics , Asparaginase/metabolism , Asparagine/genetics , Aspartate Aminotransferases/genetics , Aspartate Aminotransferases/metabolism , Aspartate-Ammonia Ligase/genetics , Aspartate-Ammonia Ligase/metabolism , Gene Expression Regulation, Plant , Glutamate Synthase/genetics , Glutamate Synthase/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Metabolic Networks and Pathways
SELECTION OF CITATIONS
SEARCH DETAIL