Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(7): e2220075121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38335256

ABSTRACT

Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer's A[Formula: see text] amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A[Formula: see text] fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.


Subject(s)
Amyloid beta-Peptides , Amyloid , Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Computer Simulation , Peptide Fragments/chemistry , Kinetics
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38271485

ABSTRACT

The aggregation of medin forming aortic medial amyloid is linked to arterial wall degeneration and cerebrovascular dysfunction. Elevated levels of arteriolar medin are correlated with an increased presence of vascular amyloid-ß (Aß) aggregates, a hallmark of Alzheimer's disease (AD) and vascular dementia. The cross-interaction between medin and Aß results in the formation of heterologous fibrils through co-aggregation and cross-seeding processes both in vitro and in vivo. However, a comprehensive molecular understanding of the cross-interaction between medin and Aß-two intrinsically disordered proteins-is critically lacking. Here, we employed atomistic discrete molecular dynamics simulations to systematically investigate the self-association, co-aggregation and also the phenomenon of cross-seeding between these two proteins. Our results demonstrated that both Aß and medin were aggregation prone and their mixture tended to form ß-sheet-rich hetero-aggregates. The formation of Aß-medin hetero-aggregates did not hinder Aß and medin from recruiting additional Aß and medin peptides to grow into larger ß-sheet-rich aggregates. The ß-barrel oligomer intermediates observed in the self-aggregations of Aß and medin were also present during their co-aggregation. In cross-seeding simulations, preformed Aß fibrils could recruit isolated medin monomers to form elongated ß-sheets. Overall, our comprehensive simulations suggested that the cross-interaction between Aß and medin may contribute to their pathological aggregation, given the inherent amyloidogenic tendencies of both medin and Aß. Targeting medin, therefore, could offer a novel therapeutic approach to preserving brain function during aging and AD by improving vascular health.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/therapeutic use , Molecular Dynamics Simulation , Amyloidogenic Proteins , Risk Factors
3.
Proc Natl Acad Sci U S A ; 120(48): e2309995120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983502

ABSTRACT

The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.


Subject(s)
Peptides , tau Proteins , tau Proteins/metabolism , Peptides/chemistry , Protein Isoforms , Computer Simulation , Heparin
4.
Proc Natl Acad Sci U S A ; 120(25): e2220664120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307445

ABSTRACT

Alzheimer's disease is a neurodegenerative condition which involves heavy neuronal cell death linked to oligomers formed during the aggregation process of the amyloid ß peptide 42 (Aß42). The aggregation of Aß42 involves both primary and secondary nucleation. Secondary nucleation dominates the generation of oligomers and involves the formation of new aggregates from monomers on catalytic fibril surfaces. Understanding the molecular mechanism of secondary nucleation may be crucial in developing a targeted cure. Here, the self-seeded aggregation of WT Aß42 is studied using direct stochastic optical reconstruction microscopy (dSTORM) with separate fluorophores in seed fibrils and monomers. Seeded aggregation proceeds faster than nonseeded reactions because the fibrils act as catalysts. The dSTORM experiments show that monomers grow into relatively large aggregates on fibril surfaces along the length of fibrils before detaching, thus providing a direct observation of secondary nucleation and growth along the sides of fibrils. The experiments were repeated for cross-seeded reactions of the WT Aß42 monomer with mutant Aß42 fibrils that do not catalyze the nucleation of WT monomers. While the monomers are observed by dSTORM to interact with noncognate fibril surfaces, we fail to notice any growth along such fibril surfaces. This implies that the failure to nucleate on the cognate seeds is not a lack of monomer association but more likely a lack of structural conversion. Our findings support a templating role for secondary nucleation, which can only take place if the monomers can copy the underlying parent structure without steric clashes or other repulsive interactions between nucleating monomers.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Peptide Fragments , Catalysis
5.
Biochem Biophys Res Commun ; 737: 150467, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39133984

ABSTRACT

In general, Cu(II) is the critical factor in catalyzing reactive oxygen species (ROS) production and accelerating amyloid-ß (Aß) oligomer formation in Alzheimer's disease (AD). Natural chelating agents with good biocompatibility and appropriate binding affinity with Cu(II) have emerged as potential candidates for AD therapy. Herein, we tested the capability of guluronic acid disaccharide (Di-GA), a natural chelating agent with the moderate association affinity to Cu(II), in inhibiting ROS production and Aß oligomer formation. The results showed that Di-GA was capable of chelating with Cu(II) and reducing ROS production, even in solutions containing Fe(II), Zn(II), and Aß. In addition, Di-GA can also capture Cu(II) from Cu-Aß complexes and decrease Aß oligomer formation. The cellular results confirmed that Di-GA prevented SH-SY5Y cells from ROS and Aß oligomer damage by reducing the injury of ROS and Aß oligomers on cell membrane and decreasing their intracellular damage on mitochondria. Notably, the slightly higher efficiency of Di-GA in chelating with Cu(I) than Cu(II) can be benefit for its in vivo applications, as Cu(I) is not only the most active but also the special intermediate specie during ROS production process. All of these results proved that Di-GA could be a promising marine drug candidate in reducing copper-related ROS damage and Aß oligomer toxicity associated with AD.

6.
Arch Biochem Biophys ; : 110179, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393664

ABSTRACT

Amyloid-beta (Aß) aggregation is a critical factor in the pathogenesis of Alzheimer's disease, with distinct aggregation behaviours observed between its isoforms Amyloid-ß 1-40 (Aß40) and 1-42 (Aß42). In this study, we investigated the aggregation properties of Aß40 using fluorescence correlation spectroscopy (FCS) and detailed data analysis. Our results reveal that Aß40 undergoes a two-step cooperative aggregation process. The first step, characterized by a critical aggregation concentration (cac) of 0.5 ± 0.3 µM, results in the formation of metastable oligomers of 5 to 25 monomers and stable oligomers of 50 to 100 monomers, with less than 10% of the amyloid aggregated. The second step, with a cac of 18.9 ± 2.2 µM, leads to the formation of much larger aggregates, consistent with protofibrils, and approximately 50% aggregated amyloid. Notably, the cac for Aß40 is significantly higher, and the fraction of aggregated amyloid is much lower compared to Aß42, indicating a lower propensity for aggregation. Additionally, our findings suggest that Aß40 early oligomers are reversible upon dilution, albeit with a kinetic barrier to disaggregation. These insights into the aggregation mechanisms of Aß40 enhance our understanding of its role in Alzheimer's disease and may inform therapeutic strategies targeting amyloid aggregation.

7.
Arch Biochem Biophys ; 758: 110065, 2024 08.
Article in English | MEDLINE | ID: mdl-38906311

ABSTRACT

One of important characteristics of Alzheimer's disease is a persistent oxidative/nitrosative stress caused by pro-oxidant properties of amyloid-beta peptide (Aß) and chronic inflammation in the brain. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is easily oxidized under oxidative stress. Numerous data indicate that oxidative modifications of GAPDH in vitro and in cell cultures stimulate GAPDH denaturation and aggregation, and the catalytic cysteine residue Cys152 is important for these processes. Both intracellular and extracellular GAPDH aggregates are toxic for the cells. Interaction of denatured GAPDH with soluble Aß results in mixed insoluble aggregates with increased toxicity. The above-described properties of GAPDH (sensitivity to oxidation and propensity to form aggregates, including mixed aggregates with Aß) determine its role in the pathogenesis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Glyceraldehyde-3-Phosphate Dehydrogenases , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Amyloid beta-Peptides/metabolism , Oxidative Stress , Animals , Oxidation-Reduction
8.
Bioorg Chem ; 147: 107404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678777

ABSTRACT

Histidine (His) plays a key role in mediating protein interactions and its unique side chain determines pH responsive self-assembling processes and thus in the formation of nanostructures. In this study, To identify novel self-assembling bioinspired sequences, we analyzed a series of peptide sequences obtained through the point mutation of aromatic residues of 264-277 fragment of nucleophosmin 1 (NPM1) with single and double histidines. Through several orthogonal biophysical techniques and under different pH and ionic strength conditions we evaluated the effects of these substitutions in the amyloidogenic features of derived peptides. The results clearly indicate that both the type of aromatic mutated residue and its position can have different effect on amyloid-like behaviors. They corroborate the crucial role exerted by Tyr271 in the self-assembling process of CTD of NPM1 in AML mutated form and add novel insights in the accurate investigation of how side chain orientations can determine successful design of innovative bioinspired materials.


Subject(s)
Histidine , Nuclear Proteins , Nucleophosmin , Humans , Amino Acid Sequence , Amyloid/chemistry , Histidine/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/genetics
9.
Bioorg Chem ; 145: 107229, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401360

ABSTRACT

Flavonoids, a ubiquitous group of plant polyphenols, are well-known for their beneficial effects on human health. Their phenylchromane skeletons have structural similarities to donepezil [the US FDA-approved drug used to treat Alzheimer's disease (AD)]. The objective of this study was to design and synthesize valuable agents derived from flavonoids for relieving the symptoms of AD. A variety of flavonoid derivative salts incorporating benzylpyridinium units were synthesized and several of them remarkedly inhibited acetylcholinesterase (AChE) activity in vitro. Additionally, aurone derivative salts protected against cell death resulting from t-BHP exposure in rat pheochromocytoma PC12 cells and slightly promoted neurite outgrowth. Furthermore, they potently suppressed the aggregation of amyloid-ß (Aß1-42). Our findings highlight the effectiveness of donepezil-inspired aurone derivative salts as multipotent candidates for AD.


Subject(s)
Alzheimer Disease , Benzofurans , Cholinesterase Inhibitors , Rats , Animals , Humans , Donepezil/pharmacology , Donepezil/therapeutic use , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Salts , Pharmacophore , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Flavonoids/therapeutic use , Structure-Activity Relationship
10.
Biochem Genet ; 62(5): 3658-3680, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38196030

ABSTRACT

One of the recognized motor neuron degenerative disorders is amyotrophic lateral sclerosis (ALS). By now, several mutations have been reported and linked to ALS patients, some of which are induced by mutations in the human superoxide dismutase (hSOD1) gene. The ALS-provoking mutations are located throughout the structure of hSOD1 and promote the propensity to aggregate. Despite numerous investigations, the underlying mechanism related to the toxicity of mutant hSOD1 through the gain of a toxic function is still vague. We surveyed two mutant forms of hSOD1 by removing and adding cysteine at positions 146 and 72, respectively, to investigate the biochemical characterization and amyloid formation. Our findings predicted the harmful and destabilizing impact of two SOD1 mutants using multiple programs. The specific activity of the wild-type form was about 1.42- and 1.92-fold higher than that of C146R and G72C mutants, respectively. Comparative structural studies using CD spectropolarimetry, and intrinsic and ANS fluorescence showed alterations in secondary structure content, exposure of hydrophobic patches, and structural compactness of WT-hSOD1 vs. mutants. We demonstrated that two mutants were able to promote amyloid-like aggregates under amyloid induction circumstances (50-mM Tris-HCl pH 7.4, 0.2-M KSCN, 50-mM DTT, 37 °C, 190 rpm). Monitoring aggregates were done using an enhancement in thioflavin T fluorescence and alterations in Congo red absorption. The mutants accelerated fibrillation with subsequently greater fluorescence amplitude and a shorter lag time compared to WT-SOD1. These findings support the aggregation of ALS-associated SOD1 mutants as an integral part of ALS pathology.


Subject(s)
Amyotrophic Lateral Sclerosis , Mutation , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/chemistry , Amyloid/metabolism , Protein Aggregates , Protein Aggregation, Pathological/genetics
11.
Arch Pharm (Weinheim) ; 357(5): e2300603, 2024 May.
Article in English | MEDLINE | ID: mdl-38290060

ABSTRACT

Alzheimer's disease (AD) is a multifactorial neurological disease, and the multitarget directed ligand (MTDL) strategy may be an effective approach to delay its progression. Based on this strategy, 27 derivatives of l-tryptophan, 3a-1-3d-1, were designed, synthesized, and evaluated for their biological activity. Among them, IC50 (inhibitor concentration resulting in 50% inhibitory activity) values of compounds 3a-18 and 3b-1 were 0.58 and 0.44 µM for human serum butyrylcholinesterase (hBuChE), respectively, and both of them exhibited more than 30-fold selectivity for human serum acetylcholinesterase. Enzyme kinetics studies showed that these two compounds were mixed inhibitors of hBuChE. In addition, these two derivatives possessed extraordinary antioxidant activity in OH radical scavenging and oxygen radical absorption capacity fluorescein assays. Meanwhile, these compounds could also prevent ß-amyloid (Aß) self-aggregation and possessed low toxicity on PC12 and AML12 cells. Molecular modeling studies revealed that these two compounds could interact with the choline binding site, acetyl binding site, and peripheral anionic site to exert submicromolar BuChE inhibitory activity. In the vitro blood-brain barrier permeation assay, compounds 3a-18 and 3b-1 showed enough blood-brain barrier permeability. In drug-likeness prediction, compounds 3a-18 and 3b-1 showed good gastrointestinal absorption and a low risk of human ether-a-go-go-related gene toxicity. Therefore, compounds 3a-18 and 3b-1 are potential multitarget anti-AD lead compounds, which could work as powerful antioxidants with submicromolar selective inhibitory activity for hBuChE as well as prevent Aß self-aggregation.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Antioxidants , Blood-Brain Barrier , Butyrylcholinesterase , Cholinesterase Inhibitors , Drug Design , Tryptophan , Alzheimer Disease/drug therapy , Humans , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Animals , Tryptophan/pharmacology , Tryptophan/chemistry , Tryptophan/analogs & derivatives , Tryptophan/chemical synthesis , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Rats , Acetylcholinesterase/metabolism , Molecular Structure , PC12 Cells , Dose-Response Relationship, Drug , Models, Molecular
12.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731878

ABSTRACT

ß-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in ß-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of ß-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of ß-sheets, which serve as nucleation points for further fibril growth.


Subject(s)
Lactoglobulins , Molecular Dynamics Simulation , Protein Aggregates , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Hydrophobic and Hydrophilic Interactions , Hydrogen Bonding , Amyloid/chemistry , Peptides/chemistry , Hydrogen-Ion Concentration , Peptide Fragments/chemistry , Peptide Fragments/metabolism
13.
J Biol Chem ; 298(12): 102565, 2022 12.
Article in English | MEDLINE | ID: mdl-36208776

ABSTRACT

α-synuclein (αS) is the key component of synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. αS was first linked to PD through the identification of point mutations in the SNCA gene, causing single amino acid substitutions within αS and familial autosomal dominant forms of PD that profoundly accelerated disease onset by up to several decades. At least eight single-point mutations linked to familial PD (A30G/P, E46K, H50Q, G51D, and A53T/E/V) are located in proximity of the region preceding the non-ß amyloid component (preNAC) region, strongly implicating its pathogenic role in αS-mediated cytotoxicity. Furthermore, lipids are known to be important for native αS function, where they play a key role in the regulation of synaptic vesicle docking to presynaptic membranes and dopamine transmission. However, the role of lipids in the function of mutant αS is unclear. Here, we studied αS aggregation properties of WT αS and five of the most predominant single-point missense mutants associated with early onset PD in the presence of anionic 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine lipid vesicles. Our results highlight significant differences between aggregation rates, the number of aggregates produced, and overall fibril morphologies of WT αS and the A30P, E46K, H50Q, G51D, and A53T missense mutants in the presence of lipid vesicles. These findings have important implications regarding the interplay between the lipids required for αS function and the individual point mutations known to accelerate PD and related diseases.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Gene Expression , Lipids , Parkinson Disease/metabolism , Point Mutation , Mutation, Missense
14.
J Biol Chem ; 298(5): 101912, 2022 05.
Article in English | MEDLINE | ID: mdl-35398355

ABSTRACT

Molecular chaperones safeguard cellular protein homeostasis and obviate proteotoxicity. In the process of aging, as chaperone networks decline, aberrant protein amyloid aggregation accumulates in a mechanism that underpins neurodegeneration, leading to pathologies such as Alzheimer's disease and Parkinson's disease. Thus, it is important to identify and characterize chaperones for preventing such protein aggregation. In this work, we identified that the NAD+ synthase-nicotinamide mononucleotide adenylyltransferase (NMNAT) 3 from mouse (mN3) exhibits potent chaperone activity to antagonize aggregation of a wide spectrum of pathological amyloid client proteins including α-synuclein, Tau (K19), amyloid ß, and islet amyloid polypeptide. By combining NMR spectroscopy, cross-linking mass spectrometry, and computational modeling, we further reveal that mN3 uses different region of its amphiphilic surface near the active site to directly bind different amyloid client proteins. Our work demonstrates a client recognition mechanism of NMNAT via which it chaperones different amyloid client proteins against pathological aggregation and implies a potential protective role for NMNAT in different amyloid-associated diseases.


Subject(s)
Amyloidogenic Proteins , Nicotinamide-Nucleotide Adenylyltransferase , Amyloidogenic Proteins/metabolism , Animals , Mice , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Protein Aggregation, Pathological/physiopathology
15.
Proteins ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964477

ABSTRACT

Among the various factors controlling the amyloid aggregation process, the influences of ions on the aggregation rate and the resulting structures are important aspects to consider, which can be studied by molecular simulations. There is a wide variety of protein force fields and ion models, raising the question of which model to use in such studies. To address this question, we perform molecular dynamics simulations of Aß16-22 , a fragment of the Alzheimer's amyloid ß peptide, using different protein force fields, AMBER99SB-disp (A99-d) and CHARMM36m (C36m), and different ion parameters. The influences of NaCl and CaCl2 at various concentrations are studied and compared with the systems without the addition of ions. Our results indicate a sensitivity of the peptide-ion interactions to the different ion models. In particular, we observe a strong binding of Ca2+ to residue E22 with C36m and also with the Åqvist ion model used together with A99-d, which slightly affects the monomeric Aß16-22 structures and the aggregation rate, but significantly affects the oligomer structures formed in the aggregation simulations. For example, at high Ca2+ concentrations, there was a switch from an antiparallel to a parallel ß-sheet. Such ionic influences are of biological relevance because local ion concentrations can change in vivo and could help explain the polymorphism of amyloid fibrils.

16.
J Cell Physiol ; 238(12): 2841-2854, 2023 12.
Article in English | MEDLINE | ID: mdl-37882235

ABSTRACT

Amyloid-ß (Aß) protein aggregation in the brain is a pathological hallmark of Alzheimer's disease (AD) however, the underlying molecular mechanisms regulating amyloid aggregation are not well understood. Here, we studied the propitious role of E3 ubiquitin ligase Pirh2 in Aß protein aggregation in view of its regulatory ligase activity in the ubiquitin-proteasome system employing both cellular and sporadic rodent models of AD. Pirh2 protein abundance was significantly increased during Streptozotocin (STZ) induced AD conditions, and transient silencing of Pirh2 significantly inhibited the Aß aggregation and modified the dendrite morphology along with the substantial decrease in choline level in the differentiated neurons. MALDI-TOF/TOF, coimmunoprecipitation, and UbcH7-linked in vitro ubiquitylation analysis confirmed the high interaction of Pirh2 with chaperone GRP78. Furthermore, Pirh2 silencing inhibits the STZ induced altered level of endoplasmic reticulum stress and intracellular Ca2+ levels in neuronal N2a cells. Pirh2 silencing also inhibited the AD conditions related to the altered protein abundance of HSP90 and its co-chaperones which may collectively involve in the reduced burden of amyloid aggregates in neuronal cells. Pirh2 silencing further stabilized the nuclear translocation of phospho-Nrf2 and inhibited the altered level of autophagy factors. Taken together, our data indicated that Pirh2 is critically involved in STZ induced AD pathogenesis through its interaction with ER-chaperone GRP78, improves the neuronal connectivity, affects the altered level of chaperones, co-chaperones, & autophagic markers, and collectively inhibits the Aß aggregation.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum Chaperone BiP , Signal Transduction , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides/metabolism , Glucose/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Aggregates , Male , Animals , Mice , Rats , Cell Line, Tumor , Rats, Sprague-Dawley , Endoplasmic Reticulum Stress
17.
Curr Issues Mol Biol ; 45(5): 4063-4079, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37232728

ABSTRACT

The effects of Mesua ferrea Linn flower (MFE) extract on the pathogenic cascade of Alzheimer's disease (AD) were determined by an in vitro and cell culture model in the search for a potential candidate for the treatment of AD. The 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay exhibited that the MFE extract had antioxidant activities. According to the Ellman and the thioflavin T method's result, the extracts could inhibit acetylcholinesterase and ß-amyloid (Aß) aggregation. Studies on neuroprotection in cell culture found that the MFE extract could reduce the death of human neuroblastoma cells (SH-SY5Y) caused by H2O2 and Aß. Western blot analysis exhibited that the MFE extract alleviated H2O2-induced neuronal cell damage by downregulating the pro-apoptotic proteins, including cleaved caspase-3, Bax, and by enhancing the expression of anti-apoptotic markers including MCl1, BClxl, and survivin. Moreover, MFE extract inhibited the expression of APP, presenilin 1, and BACE, and increased the expression of neprilysin. In addition, the MFE extract could enhance scopolamine-induced memory deficit in mice. Overall, results showed that the MFE extract had several modes of action related to the AD pathogenesis cascade, including antioxidants, anti-acetylcholinesterase, anti-Aß aggregation, and neuroprotection against oxidative stress and Aß. Therefore, the M. ferrea L. flower might be a possibility for further development as a medication for AD.

18.
J Cell Sci ; 134(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34704593

ABSTRACT

In response to environmental stress, human cells have been shown to form reversible amyloid aggregates within the nucleus, termed amyloid bodies (A-bodies). These protective physiological structures share many of the biophysical characteristics associated with the pathological amyloids found in Alzheimer's and Parkinson's disease. Here, we show that A-bodies are evolutionarily conserved across the eukaryotic domain, with their detection in Drosophila melanogaster and Saccharomyces cerevisiae marking the first examples of these functional amyloids being induced outside of a cultured cell setting. The conditions triggering amyloidogenesis varied significantly among the species tested, with results indicating that A-body formation is a severe, but sublethal, stress response pathway that is tailored to the environmental norms of an organism. RNA-sequencing analyses demonstrate that the regulatory low-complexity long non-coding RNAs that drive A-body aggregation are both conserved and essential in human, mouse and chicken cells. Thus, the identification of these natural and reversible functional amyloids in a variety of evolutionarily diverse species highlights the physiological significance of this protein conformation, and will be informative in advancing our understanding of both functional and pathological amyloid aggregation events. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Drosophila melanogaster , Animals , Biophysics , Drosophila melanogaster/genetics , Mice
19.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34181000

ABSTRACT

Several prediction algorithms and tools have been developed in the last two decades to predict protein and peptide aggregation. These in silico tools aid to predict the aggregation propensity and amyloidogenicity as well as the identification of aggregation-prone regions. Despite the immense interest in the field, it is of prime importance to systematically compare these algorithms for their performance. In this review, we have provided a rigorous performance analysis of nine prediction tools using a variety of assessments. The assessments were carried out on several non-redundant datasets ranging from hexapeptides to protein sequences as well as amyloidogenic antibody light chains to soluble protein sequences. Our analysis reveals the robustness of the current prediction tools and the scope for improvement in their predictive performances. Insights gained from this work provide critical guidance to the scientific community on advantages and limitations of different aggregation prediction methods and make informed decisions about their research needs.


Subject(s)
Computational Biology/methods , Databases, Protein , Peptides/metabolism , Protein Aggregation, Pathological/metabolism , Proteins/metabolism , Algorithms , Amino Acid Sequence , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Humans , Peptides/chemistry , Protein Aggregation, Pathological/etiology , Protein Binding , Proteins/chemistry , Reproducibility of Results , Sensitivity and Specificity , Structure-Activity Relationship , Web Browser
20.
Bioorg Chem ; 137: 106636, 2023 08.
Article in English | MEDLINE | ID: mdl-37290376

ABSTRACT

Herein we report the synthesis of new furanoid sugar amino acids and thioureas, prepared by coupling aromatic amino acids and dipeptides with isothiocyanato- functionalized ribofuranose ring. Since carbohydrate-derived structures possess many biological activities, synthesized compounds were evaluated as anti-amyloid and antioxidant agents. The anti-amyloid activity of the studied compounds was evaluated based on their potential to destroy amyloid fibrils of intrinsically disordered Aß40 peptide and globular hen egg-white (HEW) lysozyme. The destructive efficiency of the compounds differed between the studied peptides. While the destruction activity of the compounds on the HEW lysozyme amyloid fibrils was negligible, the effect on Aß40 amyloid fibrils was significantly higher. Furanoid sugar α-amino acid 1 and its dipeptide derivatives 8 (Trp-Trp) and 11 (Trp-Tyr) were the most potent anti-Aß fibrils compounds. The antioxidant properties of synthesized compounds were estimated by three complementary in vitro assays (DPPH, ABTS, and FRAP). The ABTS assay was the most sensitive for assessing the radical scavenging activity of all tested compounds compared to the DPPH test. Significant antioxidant activity was detected for compounds in the group of aromatic amino acids depending on the present amino acid, with the highest activity in the case of dipeptides 11 and 12 containing the Tyr and Trp moiety. Regarding the FRAP assay, the best reducing antioxidant potential revealed Trp-containing compounds 5, 10, and 12.


Subject(s)
Amyloid beta-Peptides , Antioxidants , Amino Acids/pharmacology , Amino Acids/chemistry , Amino Acids, Aromatic , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Carbohydrates , Dipeptides/pharmacology , Dipeptides/chemistry , Muramidase/chemistry , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL