Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347.624
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 235-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38271641

ABSTRACT

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Lineage , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Mice , Transcription Factors/metabolism , Transcriptome , Multiomics
2.
Annu Rev Immunol ; 37: 269-293, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30649988

ABSTRACT

Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.


Subject(s)
Cell Differentiation , Cellular Microenvironment , Inflammation/immunology , Myeloid Cells/physiology , Animals , Biomarkers , Cell Plasticity , Homeostasis , Humans , Sequence Analysis, RNA
3.
Annu Rev Biochem ; 93(1): 529-564, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38669516

ABSTRACT

The complex carbohydrate structures decorating human proteins and lipids, also called glycans, are abundantly present at cell surfaces and in the secretome. Glycosylation is vital for biological processes including cell-cell recognition, immune responses, and signaling pathways. Therefore, the structural and functional characterization of the human glycome is gaining more and more interest in basic biochemistry research and in the context of developing new therapies, diagnostic tools, and biotechnology applications. For glycomics to reach its full potential in these fields, it is critical to appreciate the specific factors defining the function of the human glycome. Here, we review the glycosyltransferases (the writers) that form the glycome and the glycan-binding proteins (the readers) with an essential role in decoding glycan functions. While abundantly present throughout different cells and tissues, the function of specific glycosylation features is highly dependent on their context. In this review, we highlight the relevance of studying the glycome in the context of specific carrier proteins, cell types, and subcellular locations. With this, we hope to contribute to a richer understanding of the glycome and a more systematic approach to identifying the roles of glycosylation in human physiology.


Subject(s)
Glycomics , Glycosyltransferases , Polysaccharides , Humans , Glycosylation , Polysaccharides/metabolism , Polysaccharides/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Glycomics/methods , Glycoproteins/metabolism , Glycoproteins/chemistry , Glycoproteins/genetics , Animals , Protein Processing, Post-Translational
4.
Cell ; 187(10): 2343-2358, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729109

ABSTRACT

As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.


Subject(s)
Algorithms , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Computational Biology/methods , Data Analysis , Animals , Cluster Analysis
5.
Cell ; 187(17): 4554-4570.e18, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38981480

ABSTRACT

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.


Subject(s)
Blastocystis , Diet , Gastrointestinal Microbiome , Obesity , Humans , Blastocystis/metabolism , Male , Female , Blastocystis Infections , Adult , Middle Aged , Intestines/parasitology , Intestines/microbiology , Cardiovascular Diseases/prevention & control , Metagenome
6.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38447573

ABSTRACT

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Subject(s)
Antigen Presentation , Neoplasms , Neutrophils , Animals , Humans , Mice , Antigens, Neoplasm , Leucine/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neutrophils/metabolism , T-Lymphocytes , Single-Cell Gene Expression Analysis
7.
Cell ; 187(17): 4790-4811.e22, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39047727

ABSTRACT

Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.


Subject(s)
Neoplasms , Single-Cell Analysis , Humans , Neoplasms/immunology , Neoplasms/pathology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Phenotype , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunotherapy , Prognosis
8.
Cell ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39332414

ABSTRACT

In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.

9.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38452761

ABSTRACT

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Eukaryotic Cells/metabolism , Neural Networks, Computer , Proteome/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
10.
Cell ; 187(16): 4318-4335.e20, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38964327

ABSTRACT

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Dexamethasone , Monocytes , SARS-CoV-2 , Single-Cell Analysis , Humans , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Monocytes/metabolism , Monocytes/drug effects , SARS-CoV-2/drug effects , Male , Female , Transcriptome , Middle Aged , Aged , Glucocorticoids/therapeutic use , Glucocorticoids/pharmacology , Lung/pathology , Adult
11.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38242087

ABSTRACT

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Models, Biological , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Epigenomics , Genomics , Glioblastoma/genetics , Glioblastoma/pathology , Single-Cell Analysis , Tumor Microenvironment , Genetic Heterogeneity
12.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848678

ABSTRACT

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Subject(s)
Homeostasis , Intestinal Mucosa , Receptors, G-Protein-Coupled , Regeneration , Stem Cells , Animals , Stem Cells/metabolism , Stem Cells/cytology , Mice , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Intestines/cytology , Cell Differentiation , Mice, Inbred C57BL , Epithelial Cells/metabolism , Single-Cell Analysis , Male
13.
Cell ; 187(20): 5775-5795.e15, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39214080

ABSTRACT

Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Humans , Metagenome/genetics , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Food Microbiology , Metagenomics/methods , Bacteria/genetics , Bacteria/classification
14.
Cell ; 187(12): 3141-3160.e23, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38759650

ABSTRACT

Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.


Subject(s)
Caenorhabditis elegans , Embryonic Development , Gene Expression Regulation, Developmental , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Profiling/methods , Gene Knockdown Techniques , Phenotype
15.
Cell ; 187(19): 5267-5281.e13, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39127037

ABSTRACT

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.


Subject(s)
Active Transport, Cell Nucleus , Nuclear Pore Complex Proteins , Nuclear Pore , Saccharomyces cerevisiae , Animals , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Nuclear Pore/chemistry , Saccharomyces cerevisiae/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/chemistry , Mice , Cell Nucleus/metabolism , Toxoplasma/metabolism , Toxoplasma/ultrastructure , Cryoelectron Microscopy , RNA, Messenger/metabolism , Models, Molecular , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure
16.
Cell ; 186(26): 5677-5689, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38065099

ABSTRACT

RNA sequencing in situ allows for whole-transcriptome characterization at high resolution, while retaining spatial information. These data present an analytical challenge for bioinformatics-how to leverage spatial information effectively? Properties of data with a spatial dimension require special handling, which necessitate a different set of statistical and inferential considerations when compared to non-spatial data. The geographical sciences primarily use spatial data and have developed methods to analye them. Here we discuss the challenges associated with spatial analysis and examine how we can take advantage of practice from the geographical sciences to realize the full potential of spatial information in transcriptomic datasets.


Subject(s)
Data Analysis , Spatial Analysis , Transcriptome , Computational Biology , Gene Expression Profiling , Transcriptome/genetics
17.
Cell ; 186(22): 4868-4884.e12, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37863056

ABSTRACT

Single-cell analysis in living humans is essential for understanding disease mechanisms, but it is impractical in non-regenerative organs, such as the eye and brain, because tissue biopsies would cause serious damage. We resolve this problem by integrating proteomics of liquid biopsies with single-cell transcriptomics from all known ocular cell types to trace the cellular origin of 5,953 proteins detected in the aqueous humor. We identified hundreds of cell-specific protein markers, including for individual retinal cell types. Surprisingly, our results reveal that retinal degeneration occurs in Parkinson's disease, and the cells driving diabetic retinopathy switch with disease stage. Finally, we developed artificial intelligence (AI) models to assess individual cellular aging and found that many eye diseases not associated with chronological age undergo accelerated molecular aging of disease-specific cell types. Our approach, which can be applied to other organ systems, has the potential to transform molecular diagnostics and prognostics while uncovering new cellular disease and aging mechanisms.


Subject(s)
Aging , Aqueous Humor , Artificial Intelligence , Liquid Biopsy , Proteomics , Humans , Aging/metabolism , Aqueous Humor/chemistry , Biopsy , Parkinson Disease/diagnosis
18.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37080201

ABSTRACT

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Subject(s)
Electronics , Sequence Analysis, RNA , Humans , Cell Differentiation , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/metabolism , Single-Cell Analysis , Transcriptome , Electronics/methods
19.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37774681

ABSTRACT

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Subject(s)
Alzheimer Disease , Frontal Lobe , Microglia , Neurons , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides/metabolism , Microglia/pathology , Neurons/pathology , Pyramidal Cells , Biopsy , Frontal Lobe/pathology , Single-Cell Gene Expression Analysis , Cell Nucleus/metabolism , Cell Nucleus/pathology
20.
Cell ; 186(25): 5554-5568.e18, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065080

ABSTRACT

Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-ß-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Signal Transduction , Cell Differentiation , Oncogenes , Proto-Oncogene Proteins p21(ras)/genetics , Stem Cells , Humans , Animals , Mice , Cell Lineage
SELECTION OF CITATIONS
SEARCH DETAIL