Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Inorg Chem ; 29(2): 201-216, 2024 03.
Article in English | MEDLINE | ID: mdl-38587623

ABSTRACT

The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Adsorption , Metals, Heavy/chemistry , Metals, Heavy/metabolism , Metals, Heavy/pharmacology , Thymus Plant/chemistry , Lead/chemistry , Lead/metabolism , Copper/chemistry , Copper/pharmacology , Copper/metabolism , Microbial Sensitivity Tests
2.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38760884

ABSTRACT

AIMS: Enterococcus faecalis (E. faecalis) is a leading cause of nosocomial infection and presents a wide spectrum of antibiotic resistance, being vancomycin-resistant Enterococcus (VRE) one of the most relevant. Synthetic antimicrobial peptides (SAMPs) are currently a promising option to overcome antimicrobial resistance. Thus, the purpose of this study was to assess the effect of eight SAMPs against vancomycin-resistant E. faecalis, as well as to investigate their mechanism of action and synergy with conventional antibiotics. METHODS AND RESULTS: Here, eight SAMPs, Mo-CBP3-PepI, Mo-CBP3-PepII, Mo-CBP3-PepIII, RcAlb-PepI, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA, were tested for antibacterial activity in vitro against E. faecalis (ATCC® 51299) through broth microdilution. A maximum of 48% of E. faecalis growth inhibition was achieved by treatment with SAMPs alone. However, when these peptides were combined with the antibiotic chloramphenicol, assessed by checkerboard method, the inhibition increased to 55%-76% of inhibition, two to three-folds of increase if compared to the effects of the compounds alone. Microscopic analysis showed that E. faecalis cells treated with a combination of SAMPs and chloramphenicol resulted in bacterial membrane damage. The biofilm inhibition maximum was 22% for SAMPs alone, when combined with chloramphenicol, the maximum increased to 33%. CONCLUSIONS: SAMPs and their combination with chloramphenicol demonstrate antibacterial activity against E. faecalis, possibly by inducing bacterial membrane damage.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Chloramphenicol , Drug Synergism , Enterococcus faecalis , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Antimicrobial Peptides/pharmacology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin/pharmacology
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474323

ABSTRACT

This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 µg/mL) and bactericidal concentration (2.0 µg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.


Subject(s)
Cinnamomum , Oils, Volatile , Oils, Volatile/pharmacology , Cinnamomum/genetics , Staphylococcus aureus/physiology , Virulence , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Biofilms , Oxidative Stress , Transcription, Genetic , Peptide Hydrolases/genetics , Microbial Sensitivity Tests
4.
Molecules ; 28(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36770821

ABSTRACT

Essential oils (EOs) are mixtures of volatile plant secondary metabolites and have been exploited by humans for thousands of years for various purposes because of their many bioactivities. In this study, the EO from Thymus capitatus, a thyme species organically cultured on the Greek Island of Lemnos, was analyzed for its chemical composition (through GC-FID and GC-MS), antioxidant activity (AA), and total phenolic content (TPC), as well as its antimicrobial and antibiofilm actions against three important foodborne bacterial pathogens (Salmonella enterica ser. Typhimurium, Listeria monocytogenes, and Yersinia enterocolitica). For the latter investigations, the minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs) of the EO against the planktonic and biofilm growth of each pathogen were determined, together with the minimum biofilm eradication concentrations (MBECs). Results revealed that T. capitatus EO was rich in thymol, p-cymene, and carvacrol, presenting high AA and TPC (144.66 µmol TroloxTM equivalents and 231.32 mg gallic acid equivalents per g of EO, respectively), while its MICs and MBICs ranged from 0.03% to 0.06% v/v and 0.03% to 0.13% v/v, respectively, depending on the target pathogen. The EO was able to fully destroy preformed (mature) biofilms of all three pathogenic species upon application for 15 min, with MBECs ranging from 2.00 to 6.25% v/v. Overall, the results demonstrate that the EO of organically cultured T. capitatus presents strong antioxidant, antibacterial, and antibiofilm properties and could, therefore, be further exploited as a functional and antimicrobial natural formulation for food and health applications.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Thymus Plant , Humans , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Thymus Plant/chemistry , Greece , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Phenols/pharmacology , Salmonella typhimurium , Microbial Sensitivity Tests
5.
Molecules ; 27(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364152

ABSTRACT

The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 µg/mL and 41.83 ± 0.01 µg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.


Subject(s)
Oils, Volatile , Origanum , Mice , Animals , Origanum/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Thymol , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology
6.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630751

ABSTRACT

The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from Rubia cordifolia spp., as similar to gatifloxacin, a synthetic antibacterial agent. This suggested the bacterial DNA gyrase and DNA topoisomerase IV as potential pharmacological targets of pseudopurpurin. In this study, estimation of structural similarity to referent antibacterial agents and molecular docking in the DNA gyrase and DNA topoisomerase IV complexes were performed for a homologous series of four hydroxyanthraquinones. Estimation of shape- and chemical feature-based similarity with (S)-gatifloxacin, a DNA gyrase inhibitor, and (S)-levofloxacin, a DNA topoisomerase IV inhibitor, outlined pseudopurpurin and munjistin as the most similar structures. The docking simulations supported the hypothesis for a plausible antibacterial activity of hydroxyanthraquinones. The predicted docking poses were grouped into 13 binding modes based on spatial similarities in the active site. The simultaneous presence of 1-OH and 3-COOH substituents in the anthraquinone scaffold were emphasized as relevant features for the binding modes' variability and ability of the compounds to strongly bind in the DNA-enzyme complexes. The results reveal new potential pharmacological targets of the studied polyphenols and help in their prioritization as drug candidates and dietary supplements.


Subject(s)
DNA Topoisomerase IV , Rubia , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry , Gatifloxacin , Molecular Docking Simulation , Polyphenols
7.
Microb Pathog ; 161(Pt B): 105289, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34785276

ABSTRACT

The purpose of this article is to study the effect of the probiotic on experimental infections of carp's fingerlings with Lactococcus garvieae. Lactic acid bacteria (LAB) (Lactobacillus fermentum 24с, Pediococcus pentosaceus 10/9к, Lactobacillus paracasei 9c) for the probiotic were previously isolated from the intestines of mature carps from Maybalyk commercial fisheries, which provided fingerlings for this experiment too as well. The feed-contained probiotic was given to fish in the experimental group for 14 days before challenge with pathogen L. garvieae. Throughout ten days after the infection, death of the fish was regularly recorded in the group, where the probiotic was not given with the feeding. Ten days after, all fish in this group died. In the probiotic group, the mortality on the tenth day after the challenge with pathogen was 10%. It was concluded the effect of the probiotic is not due to antibacterial action to the pathogen. The effectiveness of the probiotic can be associated with the displacement of the pathogen, due to the competitive adhesion and/or more likely, with the activation of the immune response from the fish organism due to the addition of the probiotic to the feed.


Subject(s)
Carps , Fish Diseases , Lacticaseibacillus paracasei , Lactobacillales , Probiotics , Animals , Pediococcus pentosaceus
8.
J Sci Food Agric ; 101(2): 441-448, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32648586

ABSTRACT

BACKGROUND: Low molecular-weight phenolic fractions (LMPFs) were extracted from Albion (LMPF-A) and Camarosa (LMPF-C) strawberry cultivars. Their antibacterial activity against Listeria monocytogenes and Salmonella Typhimurium cocktails in vitro and in vivo was investigated using strawberry juice as a food model. This study also sought to determine their antibacterial mechanism. RESULTS: Quercetin was identified as a principal compound in both phenolic fractions. The minimum bactericide concentration (MBC) values were 750 and 850 µg mL-1 (LMPF-C) and 800 and 950 µg mL-1 (LMPF-A) against S.Typhimurium and L. monocytogenes, respectively. The possible antibacterial activity of the phenolic extracts could be related to the release of phosphate and potassium ions, the effect of the disruption of membrane integrity on L. monocytogenes, and the effect of the inhibition of dihydronicotinamide adenine dinucleotide (NADH) oxidase activity on S. Typhimurium. Quercetin and kaempferol were the most active compounds in producing bacterial damage. Strawberry juice supplemented with the phenolic fractions and incubated at 37, 20, and 4 °C reduced bacterial viability; moreover, after treatment with the phenolic fraction at the lowest temperature, no viable cells were detected after 7 days' incubation. Salmonella was more sensitive to the supplements than Listeria in strawberry juice. CONCLUSIONS: This study could form the basis for the development of natural antibacterial agents that could be included in natural juice or used by the pharmaceutical industry. © 2020 Society of Chemical Industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fragaria/chemistry , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/drug effects , Microbial Viability/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Salmonella typhimurium/drug effects , Anti-Bacterial Agents/chemistry , Fruit/chemistry , Fruit and Vegetable Juices/analysis , Listeria monocytogenes/growth & development , Plant Extracts/chemistry , Polyphenols/chemistry , Salmonella typhimurium/growth & development
9.
Chem Pharm Bull (Tokyo) ; 68(8): 810-813, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32448814

ABSTRACT

Salusin-ß is an endogenous bioactive peptide that was identified in a human full-length enriched cDNA library using bioinformatics analyses. In our previous study, we found that synthetic salusin-ß exhibits antibacterial activity against only Gram-positive microorganisms such as Staphylococcus aureus NBRC 12732. Salusin-ß has an ability to depolarize the cytoplasmic membrane of this bacterium, and this phenomenon may be linked to the antibacterial activity of this peptide. A cell-penetrating peptide (CPP), human immunodeficiency virus (HIV)-1 transactivator of transcription (Tat) (49-57) is a short cationic peptide that can traverse cell membranes. In this report, synthetic peptide conjugates of salusin-ß and HIV-1 Tat(49-57) showed potent antibacterial activities against both Gram-positive Staphylococcus aureus NBRC 12732 and Gram-negative Escherichia coli NBRC 12734. The synthetic peptides also depolarized the cytoplasmic membrane of Escherichia coli NBRC 12734 as well as Staphylococcus aureus NBRC 12732. These results suggested that HIV-1 Tat(49-57) is a protein transduction domain or CPP that changes the interaction mode between salusin-ß and the cell membrane of Escherichia coli NBRC 12734. By binding to HIV-1 Tat(49-57), salusin-ß showed a broad antibacterial spectrum regardless of whether the target was a Gram-positive or Gram-negative bacterium.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Intercellular Signaling Peptides and Proteins/chemistry , Peptides/chemistry , tat Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Escherichia coli/drug effects , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/pharmacology , Staphylococcus aureus/drug effects
10.
Clin Oral Investig ; 24(8): 2713-2725, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31734793

ABSTRACT

OBJECTIVE: The study evaluates the effect of adding graphene-Ag nanoparticles (G-AgNp) to a PMMA auto-polymerizing resin, with focus on antibacterial activity, cytotoxicity, monomer release, and mechanical properties. MATERIALS AND METHODS: Auto-polymerizing acrylic resin (M) was loaded with 1 wt% G-AgNp (P1) and 2 wt% G-AgNp (P2). Methyl methacrylate monomer release (MMA) was measured after immersion of the samples in chloroform and cell medium respectively. Cell viability was assessed on dysplastic oral keratinocytes (DOK) and dental pulp stem cells. Oxidative stress and inflammatory response following exposure of dysplastic oral keratinocytes to the experimental resins was evaluated. Antibacterial activity against Staphylococcus aureus, Streptococcus mutans and Escherichia coli and also flexural strength of the resins were assessed. RESULTS: Residual monomer: For samples immersed in chloroform, MMA concentration reached high levels, 10.27 µg/g for sample P1; MMA increased at higher G-AgNp loading; 0.63 µg/g MMA was found in medium for P1, and less for sample P2. Cell viability: Both cell lines displayed a viability decrease, but remained above 75%, compared to controls, when exposed to undiluted samples. Inflammation: proinflammatory molecule TNF-α decreased when DOK cultures were exposed to G-AgNp samples. MDA levels indicated increased oxidative stress damage in cells treated with PMMA, confirmed by the antioxidant mechanism activation, while samples containing G-AgNp induced an antioxidant effect. All tested samples showed antibacterial properties against Gram-positive bacteria. Samples containing G-AgNp also exhibited bactericide action on E. coli. Mechanical properties: both samples containing G-AgNp improved flexural strength compared to the sample resin, measured through elastic strength parameters. CONCLUSIONS: PMMA resin loaded with G-AgNp presents promising antibacterial activity associated with minimal toxicity to human cells, in vitro, as well as improved flexural properties. CLINICAL RELEVANCE: These encouraging results obtained in vitro support further in vivo investigation, to thoroughly check whether the PMMA loaded with graphene-silver nanoparticles constitute an improvement over current denture materials.


Subject(s)
Metal Nanoparticles , Anti-Infective Agents , Denture Bases , Dentures , Escherichia coli , Flexural Strength , Graphite , Humans , Materials Testing , Polymethyl Methacrylate , Silver
11.
Opt Laser Technol ; 130: 106331, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32457554

ABSTRACT

Biomedical values of organic natural cinnamon that are buried in their bulk counterpart can be exposed and customised via nanosizing. Based on this factor, a new type of spherical cinnamon nanoclusters (Cin-NCs) were synthesised using eco-friendly nanosecond pulse laser ablation in liquid (PLAL) approach. As-grown nontoxic Cin-NCs suspended in the citric acid of pH 4.5 (acted as organic solvent) were characterised thoroughly to evaluate their structural, optical and bactericidal properties. The effects of various laser fluences (LF) at the fixed wavelength (532 nm) on the physiochemical properties of these Cin-NCs were determined. The FTIR spectra of the Cin-NCs displayed the symmetric-asymmetric stretching of the functional groups attached to the heterocyclic/cinnamaldehyde compounds. The HR-TEM image of the optimum sample revealed the nucleation of the crystalline spherical Cin-NCs with a mean diameter of approximately 10 ± 0.3 nm and lattice fringe spacing around 0.14 nm. In addition, the inhibition zone diameter (IZD) and optical density (OD600) of the proposed Cin-NCs were measured to assess their antibacterial potency against the Staphylococcus aureus (IZD ≈ 24 mm) and Escherichia coli (IZD ≈ 25 mm) bacterial strains. The strong UV absorption (in the range of 269 and 310 nm) shown by these NCs was established to be useful for the antibacterial drug development and food treatment.

12.
Molecules ; 25(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272751

ABSTRACT

Zinc oxide (ZnO) nanorods grown by chemical bath deposition (CBD) on the surface of polyetheresulfone (PES) electrospun fibers confer antimicrobial properties to the obtained hybrid inorganic-polymeric PES/ZnO mats. In particular, a decrement of bacteria colony forming units (CFU) is observed for both negative (Escherichia coli) and positive (Staphylococcus aureus and Staphylococcus epidermidis) Grams. Since antimicrobial action is strictly related to the quantity of ZnO present on surface, a CBD process optimization is performed to achieve the best results in terms of coverage uniformity and reproducibility. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) provide morphological and compositional analysis of PES/ZnO mats while thermogravimetric analysis (TGA) is useful to assess the best process conditions to guarantee the higher amount of ZnO with respect to PES scaffold. Biocidal action is associated to Zn2+ ion leaching in solution, easily indicated by UV-Vis measurement of metallation of free porphyrin layers deposited on glass.


Subject(s)
Anti-Bacterial Agents/chemistry , Nanotubes/chemistry , Polymers/chemistry , Sulfones/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Microscopy, Electron, Scanning/methods , Nanofibers/chemistry , Reproducibility of Results , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
13.
J Appl Microbiol ; 126(2): 633-640, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30353941

ABSTRACT

AIM: The purpose of this study was to clarify the mechanism of the antibacterial action of two high potential and natural food additives, epigallocatechin gallate (EGCg) and theaflavin-3,3'-digallate (TF3), on Clostridium perfringens. METHODS AND RESULTS: Minimal inhibitory concentrations were determined by the serial dilution method. Afterwards, the cells were treated with 250 or 1000 mg l-1 of EGCg and 125 or 500 mg l-1 of TF3 and morphological changes were observed and cell sizes were also measured under fluorescence microscopy. Our results showed that TF3 had a twice stronger antibacterial activity than EGCg against C. perfringens. Phase-contrast and fluorescence microscopy confirmed that the bacterial cells elongated without DNA segregation and septum formation in the presence of 250 mg l-1 EGCg. While in the higher concentration of EGCg and TF3, cell growth was suppressed. Bacterial cells reached to around 12 µm after the 24 h incubation with 250 mg l-1 EGCg, but the cells were shorter than the control at 1000 mg l-1 of EGCg. After washing and incubating the elongated cells in fresh medium, DNA segregated at 2 h of incubation. The average cell length decreased gradually and reached the normal size at 8 h. CONCLUSION: It seems that EGCg at a low concentration affected the proteins involved in the septum formation, DNA segregation and cell division. Furthermore, the high concentration of EGCg and TF3 seemed to cause stronger cellular damage to C. perfringens. SIGNIFICANCE AND IMPACT OF THE STUDY: These polyphenols are widely distributed in all higher plants especially in tea plants, and people tend to use natural food additives rather than synthetic ones. EGCg and TF3, as natural food additives, can prevent C. perfringens food poisoning along with other potential health benefits.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biflavonoids/pharmacology , Catechin/analogs & derivatives , Clostridium perfringens/drug effects , Catechin/pharmacology
14.
World J Microbiol Biotechnol ; 35(10): 162, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31612285

ABSTRACT

Various transient metal and metal oxide nanoparticles (NPs) have shown pronounced biological activity, including antibacterial action against different Gram-negative and Gram-positive bacteria including pathogens and drug-resistant ones. Thus, NPs can be applied in nanotechnology for controlling bacterial growth as well as in biomedicine for the treatment of various diseases. However, the mechanisms of these effects are not clear yet. This review is focused on the antibacterial effects of transient metal NPs, especially iron oxide (Fe3O4) and Ag NPs on Escherichia coli wild type and antibiotic-resistant strains. Ag NPs show more pronounced bactericidal effect than Fe3O4 NPs. Moreover, Ag NPs display more expressed antibacterial effect at low concentrations. Interestingly, kanamycin-resistant strain is more susceptible to Fe3O4 NPs than wild type strain. In order to explain the possible mechanisms of NP effects, in addition to the production of reactive oxygen species causing damage in cells, particularly, their membranes, the changes in the membrane-associated H+-translocating FOF1-ATPase activity, H+-fluxes through the bacterial membrane, redox potential and hydrogen yield by membrane-associated enzymes-hydrogenases, are discussed. We observed from the results that FOF1-ATPase could be a main target for NPs. A scheme of possible action mechanism is proposed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Membranes , Metal Nanoparticles/chemistry , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Ferric Compounds , Nanotechnology/methods , Reactive Oxygen Species , Silver/pharmacology
15.
J Toxicol Environ Health A ; 81(16): 805-818, 2018.
Article in English | MEDLINE | ID: mdl-29999476

ABSTRACT

Plant extracts exist as a complex matrix which serves as a source of numerous bioactive metabolites. The ultra performance liquid chromatography with diode-array detection-coupled electrospray ionization-mass spectrometry/mass spectrometry technique was used to characterize the aqueous extract from leaves of Alchornea glandulosa (EAG), a species popularly used to treat gastrointestinal problems as an antiulcer agent. Quantification of phenolic derivatives was determined using Folin-Ciocalteu and aluminum trichloride (AlCl3) methods. In addition, antioxidant (2,2-diphenyl-1-picrylhydrazyl [DPPH•] radical scavenging, ß-carotene-linoleic acid, and lipid peroxidation), antibacterial (agar well diffusion method and minimum inhibitory concentration), antimutagenic (Ames test), and antigenotoxic (plasmid cleavage) assays were also performed on this plant extract. The ellagitannin tris-galloyl-hexahydroxydiphenic acid-glucose was identified as the predominant compound along with tannins as majority metabolites. EAG showed high antioxidant activity accompanied by moderate antibacterial activity against Staphylococcus aureus. The highest antimutagenic activity was observed for TA97 strain without metabolic activation (S9) and with metabolic activation, TA100 and TA102 were completely inhibited. In addition, EAG exhibited potential signs of antigenotoxic action. The high antioxidant and antimutagenic activity observed for EAG suggests important therapeutic uses that still need to be verified in future studies.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimutagenic Agents/pharmacology , Antioxidants/pharmacology , Euphorbiaceae/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Staphylococcus aureus/drug effects
16.
Lett Appl Microbiol ; 67(1): 64-71, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29604211

ABSTRACT

This study aims to obtain secondary metabolites extracts from filamentous fungi isolated from soil and marine sediments from Antarctica and assess its potential antibacterial activity on Xanthomonas citri subsp. citri, the agent of citrus canker. Metabolites production was conducted in Malt 2% broth at 15°C for 20 days after which intracellular and extracellular extracts were obtained. The extracts were evaluated by cell viability assays through Resazurin Microtitre Assay. From 158 fungal extracts, 33 hampered bacterial growth in vitro. The average inhibition of the extracts obtained from terrestrial (soil) and marine (sediments) fungi was 94 and 97% respectively. These inhibition values were close to the average of 90% cell death for the positive control. MIC90 and MBC for the bioactive extracts were established. Isolates that produced active metabolites against the phytopathogen were identified using molecular taxonomy (ITS-rRNA sequencing) as: Pseudogymnoascus, Penicillium, Cadophora, Paraconiothyrium and Toxicocladosporium. Antarctic fungal strains isolated from terrestrial and marine sediments were able to produce secondary metabolites with antimicrobial activity against X. citri subsp. citri, highlighting the importance of these microbial genetic resources. These metabolites have potential to be used as alternatives for the control of this plant pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This manuscript makes an impact on the study of micro-organisms from extreme habitats and their possible contribution in discovering new active molecules against pathogens of agricultural interest. Studies on the Antarctic continent and its communities have attracted the scientific community due to the long period of isolation and low levels of disturbance that surrounds the region. Knowing the potential of fungi in this region to produce active secondary metabolites, we aim to contribute to the discovery of compounds with antibacterial action in Xanthomonas citri subsp. citri, a plant pathogen present in several regions around the globe.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibiosis/physiology , Cell Extracts/pharmacology , Fungi/metabolism , Xanthomonas/growth & development , Antarctic Regions , Anti-Bacterial Agents/metabolism , Citrus/microbiology , Geologic Sediments/microbiology , Microbial Sensitivity Tests , Plant Diseases/microbiology , Soil Microbiology , Xanthomonas/genetics
17.
Food Microbiol ; 76: 564-571, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30166188

ABSTRACT

The effects of Mentha arvensis L. (MAEO; 0.625 µL/mL) and M. piperita L. (MPEO; 1.25 µL/mL) essential oils on viable cell counts and physiological functions in Escherichia coli, Listeria monocytogenes and Salmonella enterica Serovar Enteritidis in pineapple and mango juice after a 15 min-exposure under refrigeration were evaluated in this study. The physiological functions of the bacterial cells were assessed by flow cytometry using the fluorochromes thiazole orange, propidium iodide, bis-1,3-dibutylbarbutiric acid, ethidium bromide, and 5-cyano-2,3-ditolyl tetrazolium chloride to investigate membrane integrity, membrane potential, efflux activity, and respiratory activity. MAEO and MPEO sharply reduced (>5 log10 CFU/mL cycles) the counts of E. coli, L. monocytogenes and Salmonella Enteritidis in pineapple juice, and caused smaller reductions (0.61-1.58 log10 CFU/mL cycles) in mango juice. Bacterial cells exposed to MAEO and MPEO in pineapple and mango juice showed increased membrane permeability, membrane depolarization and changes in efflux pump and respiratory activity. More physiological damage occurred in bacterial cell populations exposed to MAEO or MPEO in pineapple juice than in mango juice. These results indicate that MAEO and MPEO inactivate E. coli, L. monocytogenes and Salmonella Enteritidis cells in pineapple and mango juice through a multi-target action mode that disrupts cytoplasmic membranes, increases permeability and potential depolarization, as well as inhibits efflux pump and respiratory activity.


Subject(s)
Escherichia coli/drug effects , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/drug effects , Mangifera/microbiology , Mentha/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Salmonella enteritidis/drug effects , Ananas/chemistry , Ananas/microbiology , Escherichia coli/growth & development , Flow Cytometry , Food Contamination/analysis , Food Contamination/prevention & control , Listeria monocytogenes/growth & development , Mangifera/chemistry , Salmonella enteritidis/growth & development
18.
Biochim Biophys Acta ; 1850(4): 845-56, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25637716

ABSTRACT

BACKGROUND: Gradual attainment of bacterial resistance to antibiotics led us to develop a robust method of synthesis of stable, colloidal cupric oxide nanoparticle of physiological pH with potential antibacterial action. METHODS: Cu(II) oxide NP was synthesized by reduction-oxidation of CuCl2, using polyvinyl alcohol as stabilizer. Characteristics and antibacterial activity of the particles were investigated by techniques like UV-Vis spectrophotometry, DLS, AFM, TEM, EDS, FTIR, AAS, agar plating, FACS, gel electrophoresis and XPS. RESULTS: The NPs were about 50 nm in size and cubic in shape with two surface plasmon peaks at 266 and 370 nm and had semi-conducting behavior with a band gap of 3.40 and 3.96 eV. About 80% of precursor CuCl2 was converted to NP. The minimum inhibitory and the minimum bactericidal concentrations of CuO-NP were respectively 120 and 160 µg/mL for Escherichia coli and 180 and 195 µg/mL for Staphylococcus aureus in Luria-Bertani medium. In growth media, the NPs got modified by media organics with displacement of the stabilizer PVA molecules. This modified NP (around 240 nm) killed cells by generating ROS, which finally caused membrane lipid per-oxidation and chromosomal DNA degradation in NP-treated cells. CONCLUSION: Reports indicate that we are among the few who had prepared CuO-NP in colloidal form. The antibacterial potency of our particle in growth media was much promising than other reports. Our findings demonstrated that 'particle-specific' effect, not 'ion-specific' one, was responsible for the NP action. GENERAL SIGNIFICANCE: The NP may be used as a sterilizing agent in various bioprocesses and as substituent of antibiotics, after thorough toxicological study.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Copper/pharmacology , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Colloids , Cost-Benefit Analysis , Culture Media , Reactive Oxygen Species/metabolism
19.
BMC Microbiol ; 16(1): 181, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27502110

ABSTRACT

BACKGROUND: Generation of extended- spectrum ß- lactamases is one of the major mechanisms by which clinical Klebsiella pneumoniae develop resistance to antibiotics. Combined antibiotics prove to be a relatively effective method of controlling such resistant strains. Some of Chinese herbal active ingredients are known to have synergistic antibacterial effects. This study is aimed to investigate synergistic effects of Chinese herbal active ingredients with cefotaxime on the extended- spectrum ß- lactamase positive strains of Klebsiella pneumoniae, and to analyze mechanism of synergistic action, providing experimental evidence for clinical application of antimicrobial drugs. RESULTS: For total sixteen strains including fifteen strains of cefotaxime resistant K. pneumoniae and one extended- spectrum ß- lactamase positive standard strain, the synergy rates of cefotaxime with baicalein, matrine, and clavulanic acid were 56.3 %, 0 %, and 100 %, respectively. The fractional inhibitory concentration index of combined baicalein and cefotaxime was correlated with the percentage decrease of cefotaxime MIC of all the strains (r = -0.78, p <0.01). In the group of synergy baicalein and cefotaxime, the transcribed mRNA level of CTX-M-1 after treatment of baicalein was decreased significantly (p <0.05). Moreover, the CTX-M-1 mRNA expression percentage inhibition (100 %, 5/5) was significantly higher than non- synergy group (25 %, 1/4) (p <0.05). CONCLUSIONS: Our study demonstrated that baicalein exhibited synergistic activity when combined with cefotaxime against some of extended- spectrum ß- lactamases positive K. pneumoniae strains by inhibiting CTX-M-1 mRNA expression. However, no direct bactericidal or bacteriostatic activity was involved in the synergistic action. Baicalein seems to be a promising novel effective synergistic antimicrobial agent.


Subject(s)
Cefotaxime/pharmacology , Flavanones/pharmacology , Klebsiella pneumoniae/drug effects , beta-Lactamases/biosynthesis , Alkaloids/pharmacology , Anti-Bacterial Agents/pharmacology , Clavulanic Acid/pharmacology , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Drug Synergism , Drugs, Chinese Herbal/pharmacology , Escherichia coli Proteins/metabolism , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Quinolizines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Matrines
20.
J Biomed Mater Res B Appl Biomater ; 112(9): e35477, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39213159

ABSTRACT

Our laboratory recently developed a new class of high surface area, honeycomb Nanoclay Microsphere Framework absorbents (NMFs) that prompt rapid hemostasis. In the present work, we propose a novel approach to develop antibacterial Topical Hemostatic Agents (THAs) by anchoring silver nanoparticles (AgNPs) onto NMFs. This combination was obtained by a chemical co-reduction approach, followed by freeze-processing, and was shown to ensure stability and on-site delivery of AgNPs, without altering the hemostatic properties of NMFs. Silver-loaded NMFs showed no change in their unique architecture and led to a 55% increase in clot strength, compared to standard control plasma or commercially available THA, and a significant decrease in mean fibrin fiber diameter. Silver nanoparticles were successfully released when solubilized and prevented the growth of both Pseudomonas aeruginosa and Staphylococcus aureus at concentrations of 22 and 30 ppm of silver released, respectively. Overall, cell mortality was between 9.1 ± 5.1% and 6.3 ± 3.2%, depending on AgNP concentration, confirming a low cytotoxicity. Silver-loaded nanoclay microsphere frameworks appear to constitute promising candidates as topical hemostatic agents for secondary management of hemostasis when infection control is needed.


Subject(s)
Anti-Bacterial Agents , Clay , Hemostatics , Metal Nanoparticles , Pseudomonas aeruginosa , Silver , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/chemistry , Silver/pharmacology , Hemostatics/pharmacology , Hemostatics/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Pseudomonas aeruginosa/drug effects , Metal Nanoparticles/chemistry , Clay/chemistry , Humans , Hemostasis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL