Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Medicina (Kaunas) ; 58(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36556951

ABSTRACT

BACKGROUND AND OBJECTIVES: Hypericum perforatum (HP) is widely used for depressive therapy. Nevertheless, the antidepressant effect and potential mechanism of hyperoside (Hyp), the main active component of HP, have not been determined. MATERIALS AND METHODS: We performed ultra-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry (UPLC-Q-TOF-MS/MS) technology to analyze the components in HP. Using data mining and network pharmacology methods, combined with Cytoscape v3.7.1 and other software, the active components, drug-disease targets, and key pathways of HP in the treatment of depression were evaluated. Finally, the antidepressant effects of Hyp and the mechanism involved were verified in chronic-stress-induced mice. RESULTS: We identified 12 compounds from HP. Hyp, isoquercetin, and quercetin are the main active components of HP. The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), the Analysis Platform, DrugBank, and other databases were analyzed using data mining, and the results show that the active components of HP and depression are linked to targets such as TNF-, IL-2, TLR4, and so on. A potential signaling pathway that was most relevant to the antidepressant effects of Hyp is the C-type lectin receptor signaling pathway. Furthermore, the antidepressant effects of Hyp were examined, and it is verified for the first time that Hyp significantly alleviated depressive-like behaviors in chronic-stress-induced mice, which may be mediated by inhibiting the NLRP1 inflammasome through the CXCL1/CXCR2/BDNF signaling pathway. CONCLUSION: Hyp is one of the main active components of HP, and Hyp has antidepressant effects through the NLRP1 inflammasome, which may be connected with the CXCL1/CXCR2/BDNF signaling pathway.


Subject(s)
Depression , Inflammasomes , Mice , Animals , Depression/drug therapy , Quercetin/therapeutic use , Tandem Mass Spectrometry/methods , Brain-Derived Neurotrophic Factor , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
2.
Tumour Biol ; 43(1): 37-55, 2021.
Article in English | MEDLINE | ID: mdl-33935122

ABSTRACT

BACKGROUND: Green synthesized nanoparticles have been earmarked for use in nanomedicine including for the development of better anticancer drugs. OBJECTIVE: The aim of this study was to undertake biochemical evaluation of anticancer activities of green synthesized silver nanoparticles (AgNPs) from ethanolic extracts of fruits (AgNPs-F) and leaves (AgNPs-L) of Annona muricata. METHODS: Previously synthesized silver nanoparticles were used for the study. The effects of the AgNPs and 5-Fluorouracil were studied on PC3, HeLa and PNT1A cells. The resazurin, migration and colonogenic assays as well as qRT-PCR were employed. RESULTS: The AgNPs-F displayed significant antiproliferative effects against HeLa cells with an IC50 of 38.58µg/ml and PC3 cells with an IC50 of 48.17µg/ml but selectively spared normal PNT1A cells (selectivity index of 7.8), in comparison with first line drug 5FU and AgNPs-L whose selectivity index were 3.56 and 2.26 respectively. The migration assay revealed potential inhibition of the metastatic activity of the cells by the AgNPs-F while the colonogenic assay indicated the permanent effect of the AgNPs-F on the cancer cells yet being reversible on the normal cells in contrast with 5FU and AgNPs-L. CASP9 was significantly over expressed in all HeLa cells treated with the AgNPs-F (1.53-fold), AgNPs-L (1.52-fold) and 5FU (4.30-fold). CXCL1 was under expressed in HeLa cells treated with AgNPs-F (0.69-fold) and AgNPs-L (0.58-fold) and over expressed in cells treated with 5FU (4.95-fold), but the difference was not statistically significant. CXCR2 was significantly over expressed in HeLa cells treated with 5FU (8.66-fold) and AgNPs-F (1.12-fold) but under expressed in cells treated with AgNPs-L (0.76-fold). CONCLUSIONS: Here we show that biosynthesized AgNPs especially AgNPs-F can be used in the development of novel and better anticancer drugs. The mechanism of action of the AgNPs involves activation of the intrinsic apoptosis pathway through upregulation of CASP9 and concerted down regulation of the CXCL1/ CXCR2 gene axis.


Subject(s)
Annona/chemistry , Antineoplastic Agents/pharmacology , Caspase 9/genetics , Chemokine CXCL1/genetics , Metal Nanoparticles , Receptors, Interleukin-8B/genetics , Silver/pharmacology , Adenocarcinoma/pathology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Green Chemistry Technology , Humans , Male , Plant Extracts/chemistry , Plant Extracts/pharmacology , Prostatic Neoplasms/pathology , Uterine Cervical Neoplasms/pathology
3.
J Neuroinflammation ; 17(1): 178, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32513185

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, and inflammation has been considered crucial components of the pathogenesis of depression. NLRP1 inflammasome-driven inflammatory response is believed to participate in many neurological disorders. However, it is unclear whether NLRP1 inflammasome is implicated in the development of depression. METHODS: Animal models of depression were established by four different chronic stress stimuli including chronic unpredictable mild stress (CUMS), chronic restrain stress (CRS), chronic social defeat stress (CSDS), and repeat social defeat stress (RSDS). Depressive-like behaviors were determined by sucrose preference test (SPT), forced swim test (FST), tail-suspension test (TST), open-field test (OFT), social interaction test (SIT), and light-dark test (LDT). The expression of NLRP1 inflammasome complexes, BDNF, and CXCL1/CXCR2 were tested by western blot and quantitative real-time PCR. The levels of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) kits. Nlrp1a knockdown was performed by an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. RESULTS: Chronic stress stimuli activated hippocampal NLRP1 inflammasome and promoted the release of pro-inflammatory cytokines IL-1ß, IL-18, IL-6, and TNF-α in mice. Hippocampal Nlrp1a knockdown prevented NLRP1 inflammasome-driven inflammatory response and ameliorated stress-induced depressive-like behaviors. Also, chronic stress stimuli caused the increase in hippocampal CXCL1/CXCR2 expression and low BDNF levels in mice. Interestingly, Nlrp1a knockdown inhibited the up-regulation of CXCL1/CXCR2 expression and restored BDNF levels in the hippocampus. CONCLUSIONS: NLRP1 inflammasome-driven inflammatory response contributes to chronic stress induced depressive-like behaviors and the mechanism may be related to CXCL1/CXCR2/BDNF signaling pathway. Thus, NLRP1 inflammasome could become a potential antidepressant target.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Depression/metabolism , Inflammasomes/metabolism , Stress, Psychological/metabolism , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Behavior, Animal , Depression/immunology , Inflammasomes/immunology , Male , Mice , Signal Transduction/physiology , Stress, Psychological/immunology
4.
Brain Behav Immun ; 88: 325-339, 2020 08.
Article in English | MEDLINE | ID: mdl-32229220

ABSTRACT

The neuroinflammatory responses to human immunodeficiency virus type 1 (HIV-1) coat proteins, such as glycoprotein 120 (gp120), are considered to be responsible for the HIV-associated distal sensory neuropathy. Accumulating evidences suggest that T-cell line tropic X4 gp120 increases macrophage infiltration into the peripheral nerves, and thereby induces neuroinflammation leading to pain. However, the mechanisms underlying X4 gp120-induced macrophage recruitment to the peripheral nervous systems remain unclear. Here, we demonstrated that perineural application of X4 gp120 from HIV-1 strains IIIB and MN elicited mechanical hypersensitivity and spontaneous pain-like behaviors in mice. Furthermore, flow cytometry and immunohistochemical studies revealed increased infiltration of bone marrow-derived macrophages into the parenchyma of sciatic nerves and dorsal root ganglia (DRG) 7 days after gp120 IIIB or MN application. Chemical deletion of circulating macrophages using clodronate liposomes markedly suppressed gp120 IIIB-induced pain-like behaviors. In in vitro cell infiltration analysis, RAW 264.7 cell (a murine macrophage cell line) was chemoattracted to conditioned medium from gp120 IIIB- or MN-treated cultured Schwann cells, but not to conditioned medium from these gp120-treated DRG neurons, suggesting possible involvement of Schwann cell-derived soluble factors in macrophage infiltration. We identified using a gene expression array that CXCL1, a chemoattractant of macrophages and neutrophils, was increased in gp120 IIIB-treated cultured Schwann cells. Similar to gp120 IIIB or MN, perineural application of recombinant CXCL1 elicited pain-like behaviors accompanied by macrophage infiltration to the peripheral nerves. Furthermore, the repeated injection of CXCR2 (receptor for CXCL1) antagonist or CXCL1 neutralizing antibody prevented both pain-like behaviors and macrophage infiltration in gp120 IIIB-treated mice. Thus, the present study newly defines that Schwann cell-derived CXCL1, secreted in response to X4 gp120 exposure, is responsible for macrophage infiltration into peripheral nerves, and is thereby associated with pain-like behaviors in mice. We propose herein that communication between Schwann cells and macrophages may play a prominent role in the induction of X4 HIV-1-associated pain.


Subject(s)
Chemokine CXCL1/metabolism , HIV Envelope Protein gp120/adverse effects , Macrophages/cytology , Neuralgia , Schwann Cells/metabolism , Animals , Glycoproteins , HIV-1 , Mice
5.
J Biol Regul Homeost Agents ; 34(3): 969-976, 2020.
Article in English | MEDLINE | ID: mdl-32657109

ABSTRACT

The purpose of this study was to explore the effect of the Jinrong granule on CXCL-1 and the mechanism of the Jinrong granule on the metastasis and apoptosis of breast cancer cell lines. MDA-MB-231 human breast cancer cell line was divided into a control group, Jinrong extract group, CXCL-1 group and Jinrong extract + CXCL-1 group. The proliferation, apoptosis and permeability of the cells in the experimental group were studied. The protein expression of CXCL-1 was detected by Western blot. On this basis, a bioinformatics method was used to analyze the mechanism of CXCL-1. The results of the CCK8 experiment showed that compared with the control group, the cell proliferation activity of the CXCL-1 treatment group was enhanced while that of the Jinrong granule group was decreased. Compared with that of the CXCL-1 treatment group, the cell proliferation rate of the CXCL-1 + Jinrong granule group was significantly lower. The results showed that CXCL-1 could inhibit apoptosis of breast cancer cells, while the Jinrong granule could reverse the inhibition of apoptosis induced by CXCL-1. The results showed that the Jinrong granule could inhibit the ability of CXCL-1 to promote the migration and proliferation of breast cancer cells. The Jinrong granule could reverse the promoting effect of CXCL-1 on breast cancer through the CXCL-1- CLCR2/CCL20 pathway. In conclusion, the Jinrong granule can inhibit the invasion of breast cancer cells through the CXCL-1-CLCR2/CCL20 pathway.


Subject(s)
Breast Neoplasms , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CCL20 , Chemokine CXCL1 , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Receptors, Interleukin-8B , Signal Transduction
6.
Molecules ; 23(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158469

ABSTRACT

Astragaloside IV (ASI) has been reported to promote neural stem cells proliferation in vitro and CXCR2 expression on neutrophils. The present study was aimed to investigate the influence of ASI on adult neurogenesis in hippocampal dentate gyrus (DGs) of mouse and to discuss the possible underlying mechanisms. Total number of proliferative cells (BrdU⁺), pre-mature neurons (DCX⁺), early proliferative cells (BrdU⁺/DCX⁺), proliferative radial gila-like cells (BrdU⁺/GFAP⁺) and newly generated neurons (BrdU⁺/NeuN⁺) after ASI or vehicle administration for two weeks were counted, respectively. The results showed that BrdU⁺ cells and DCX⁺ cells were significantly increased in DGs of mice administered with ASI. The numbers of BrdU⁺/DCX⁺, BrdU⁺/GFAP⁺ cells and BrdU⁺/NeuN⁺ cells were also elevated in the ASI group. Correspondingly, ASI increased the protein expression of hippocampal DCX, GFAP and NeuN. Further study disclosed that ASI remarkably up-regulated the mRNA and protein expressions of CXCL1 as well as that of CXCR2 in the hippocampus. The promotive effect of ASI on DCX, GFAP and NeuN protein expression was abolished by SB225002, the inhibitor of CXCR2. Our results indicated that ASI modulated the homeostasis of the CXCL1/CXCR2 signaling pathway, which might be responsible for the increased neurogenesis within the hippocampal DGs of mice.


Subject(s)
Dentate Gyrus/cytology , Neurogenesis/drug effects , Saponins/administration & dosage , Signal Transduction/drug effects , Triterpenes/administration & dosage , Animals , Cell Proliferation/drug effects , Cells, Cultured , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Doublecortin Protein , Male , Mice , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Saponins/pharmacology , Triterpenes/pharmacology , Up-Regulation
7.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Article in English, Zh | MEDLINE | ID: mdl-38649200

ABSTRACT

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Subject(s)
Acupuncture Therapy , Arthritis, Experimental , Chemokine CXCL1 , Receptors, Interleukin-8B , Somatosensory Cortex , Animals , Humans , Male , Mice , Rats , Acupuncture Points , Arthritis, Experimental/therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Inflammation/therapy , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred BALB C , Pain/metabolism , Pain/genetics , Pain Management , Rats, Wistar , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Signal Transduction , Somatosensory Cortex/metabolism
8.
Mol Immunol ; 169: 50-65, 2024 May.
Article in English | MEDLINE | ID: mdl-38493581

ABSTRACT

Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1ß) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.


Subject(s)
Chemokine CXCL1 , Peripheral Nerve Injuries , Receptors, Interleukin-8B , Animals , Mice , Chemokine CXCL1/metabolism , Macrophages/metabolism , Phenylurea Compounds/pharmacology , Sciatic Nerve
9.
J Exp Clin Cancer Res ; 42(1): 129, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210553

ABSTRACT

BACKGROUND: Emerging studies have identified chronic psychological stress as an independent risk factor influencing breast cancer growth and metastasis. However, the effects of chronic psychological stress on pre-metastatic niche (PMN) formation and the underlying immunological mechanisms remain largely unknown. METHODS: The effects and molecular mechanisms of chronic unpredictable mild stress (CUMS) on modulating tumor-associated macrophages (TAMs) and PMN formation were clarified by multiplex immunofluorescence technique, cytokine array, chromatin immunoprecipitation, the dual-luciferase reporter assay, and breast cancer xenografts. Transwell and CD8+ T cytotoxicity detection were used to analyze the mobilization and function of myeloid-derived suppressor cells (MDSCs). mCherry-labeled tracing strategy and bone marrow transplantation were applied to explore the crucial role of splenic CXCR2+/+ MDSCs facilitating PMN formation under CUMS. RESULTS: CUMS significantly promoted breast cancer growth and metastasis, accompanied by TAMs accumulation in the microenvironment. CXCL1 was identified as a crucial chemokine in TAMs facilitating PMN formation in a glucocorticoid receptor (GR)-dependent manner. Interestingly, the spleen index was significantly reduced under CUMS, and splenic MDSCs were validated as a key factor mediating CXCL1-induced PMN formation. The molecular mechanism study revealed that TAM-derived CXCL1 enhanced the proliferation, migration, and anti-CD8+ T cell functions of MDSCs via CXCR2. Moreover, CXCR2 knockout and CXCR2-/-MDSCs transplantation significantly impaired CUMS-mediated MDSC elevation, PMN formation, and breast cancer metastasis. CONCLUSION: Our findings shed new light on the association between chronic psychological stress and splenic MDSC mobilization, and suggest that stress-related glucocorticoid elevation can enhance TAM/CXCL1 signaling and subsequently recruit splenic MDSCs to promote PMN formation via CXCR2.


Subject(s)
Breast Neoplasms , Melanoma , Myeloid-Derived Suppressor Cells , Stress, Psychological , Female , Humans , Breast Neoplasms/pathology , Chemokine CXCL1/metabolism , Melanoma/pathology , Spleen/metabolism , Spleen/pathology , Tumor Microenvironment , Stress, Psychological/complications , Melanoma, Cutaneous Malignant
10.
Front Physiol ; 12: 782677, 2021.
Article in English | MEDLINE | ID: mdl-34975537

ABSTRACT

Diabetic nephropathy (DN) is one of the most severe complications of diabetes. Inflammation mediated by inflammatory factors is thought to accelerate the progression of renal damage in DN. However, which inflammatory factors mediate the inflammatory response in DN remains unclear. In this study, we determined that the CXCL1-mediated inflammatory response may play an essential role in DN progression through bioassays. Subsequently, we observed that the expression of CXCL1 and its receptor (CXCR2) was significantly increased in the kidneys of mice with HFD + STZ induced diabetes and DN patients. In addition, inhibition of the CXCL1/CXCR2 axis by repertaxin alleviates renal inflammation and pathological damage in the kidneys of db/db mice. Finally, we noted that the CXCL1/CXCR2 axis might lead to inflammatory damage through phosphorylated NF-κB and further activate the NLRP3 inflammasome. Our results revealed the role of the CXCL1/CXCR2 axis in DN progression for the first time, which may be a novel therapeutic target for DN.

SELECTION OF CITATIONS
SEARCH DETAIL