Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.985
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38878778

ABSTRACT

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Subject(s)
Inflammation , Membrane Proteins , Multiple Sclerosis , Neurons , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Membrane Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Humans , Inflammation/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Signal Transduction , Autophagy , Mice, Inbred C57BL , Glutamic Acid/metabolism , Ferroptosis , Disease Models, Animal , Female , Male
2.
Cell ; 186(6): 1230-1243.e14, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931246

ABSTRACT

Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Phytochrome B/genetics , Phytochrome B/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Calcium/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Light , Light Signal Transduction , Mutation
3.
Cell ; 177(5): 1252-1261.e13, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080062

ABSTRACT

Mitochondrial calcium uptake is crucial to the regulation of eukaryotic Ca2+ homeostasis and is mediated by the mitochondrial calcium uniporter (MCU). While MCU alone can transport Ca2+ in primitive eukaryotes, metazoans require an essential single membrane-spanning auxiliary component called EMRE to form functional channels; however, the molecular mechanism of EMRE regulation remains elusive. Here, we present the cryo-EM structure of the human MCU-EMRE complex, which defines the interactions between MCU and EMRE as well as pinpoints the juxtamembrane loop of MCU and extended linker of EMRE as the crucial elements in the EMRE-dependent gating mechanism among metazoan MCUs. The structure also features the dimerization of two MCU-EMRE complexes along an interface at the N-terminal domain (NTD) of human MCU that is a hotspot for post-translational modifications. Thus, the human MCU-EMRE complex, which constitutes the minimal channel components among metazoans, provides a framework for future mechanistic studies on MCU.


Subject(s)
Calcium Channels/metabolism , Ion Channel Gating/physiology , Multiprotein Complexes/metabolism , Protein Multimerization/physiology , Calcium Channels/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , Protein Domains , Protein Structure, Secondary
4.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38091995

ABSTRACT

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Subject(s)
Cell Movement , Lung , Mechanotransduction, Cellular , Neutrophils , Animals , Mice , Cell Membrane , Ion Channels/genetics , Neutrophils/metabolism , Neutrophils/microbiology , Blood Bactericidal Activity/genetics , Mechanotransduction, Cellular/genetics
5.
Cell ; 171(2): 331-345.e22, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28942921

ABSTRACT

Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) prevents post-apoptotic necrosis and dampens inflammation. Defective efferocytosis drives important diseases, including atherosclerosis. For efficient efferocytosis, phagocytes must be able to internalize multiple ACs. We show here that uptake of multiple ACs by macrophages requires dynamin-related protein 1 (Drp1)-mediated mitochondrial fission, which is triggered by AC uptake. When mitochondrial fission is disabled, AC-induced increase in cytosolic calcium is blunted owing to mitochondrial calcium sequestration, and calcium-dependent phagosome formation around secondarily encountered ACs is impaired. These defects can be corrected by silencing the mitochondrial calcium uniporter (MCU). Mice lacking myeloid Drp1 showed defective efferocytosis and its pathologic consequences in the thymus after dexamethasone treatment and in advanced atherosclerotic lesions in fat-fed Ldlr-/- mice. Thus, mitochondrial fission in response to AC uptake is a critical process that enables macrophages to clear multiple ACs and to avoid the pathologic consequences of defective efferocytosis in vivo.


Subject(s)
Macrophages/cytology , Mitochondrial Dynamics , Animals , Apoptosis , Humans , Macrophages/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Myeloid Cells/metabolism , Phagocytes/metabolism , Phagosomes/metabolism
6.
Annu Rev Neurosci ; 46: 123-143, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36854316

ABSTRACT

This review explores the interface between circadian timekeeping and the regulation of brain function by astrocytes. Although astrocytes regulate neuronal activity across many time domains, their cell-autonomous circadian clocks exert a particular role in controlling longer-term oscillations of brain function: the maintenance of sleep states and the circadian ordering of sleep and wakefulness. This is most evident in the central circadian pacemaker, the suprachiasmatic nucleus, where the molecular clock of astrocytes suffices to drive daily cycles of neuronal activity and behavior. In Alzheimer's disease, sleep impairments accompany cognitive decline. In mouse models of the disease, circadian disturbances accelerate astroglial activation and other brain pathologies, suggesting that daily functions in astrocytes protect neuronal homeostasis. In brain cancer, treatment in the morning has been associated with prolonged survival, and gliomas have daily rhythms in gene expression and drug sensitivity. Thus, circadian time is fast becoming critical to elucidating reciprocal astrocytic-neuronal interactions in health and disease.


Subject(s)
Astrocytes , Circadian Clocks , Mice , Animals , Astrocytes/physiology , Circadian Rhythm/physiology , Circadian Clocks/genetics , Sleep , Suprachiasmatic Nucleus/metabolism
7.
Immunity ; 54(12): 2756-2771.e10, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34879220

ABSTRACT

In contrast to other antibody isotypes, B cells switched to IgE respond transiently and do not give rise to long-lived plasma cells (PCs) or memory B cells. To better understand IgE-BCR-mediated control of IgE responses, we developed whole-genome CRISPR screening that enabled comparison of IgE+ and IgG1+ B cell requirements for proliferation, survival, and differentiation into PCs. IgE+ PCs exhibited dependency on the PI3K-mTOR axis that increased protein amounts of the transcription factor IRF4. In contrast, loss of components of the calcium-calcineurin-NFAT pathway promoted IgE+ PC differentiation. Mice bearing a B cell-specific deletion of calcineurin B1 exhibited increased production of IgE+ PCs. Mechanistically, sustained elevation of intracellular calcium in IgE+ PCs downstream of the IgE-BCR promoted BCL2L11-dependent apoptosis. Thus, chronic calcium signaling downstream of the IgE-BCR controls the self-limiting character of IgE responses and may be relevant to the accumulation of IgE-producing cells in allergic disease.


Subject(s)
B-Lymphocyte Subsets/immunology , Calcineurin/metabolism , Hypersensitivity/immunology , Plasma Cells/immunology , Animals , Apoptosis , Bcl-2-Like Protein 11/metabolism , Calcineurin/genetics , Calcium Signaling , Cell Differentiation , Cell Survival , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Immunoglobulin E/metabolism , Immunoglobulin G/metabolism , Immunologic Memory , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Antigen, B-Cell/metabolism
8.
Immunity ; 54(10): 2245-2255.e4, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34464595

ABSTRACT

BCL6 is required for development of follicular T helper (Tfh) cells to support germinal center (GC) formation. However, it is not clear what unique functions programmed by BCL6 can explain its absolute essentiality in T cells for GC formation. We found that ablation of one Bcl6 allele did not appreciably alter early T cell activation and follicular localization but inhibited GC formation and Tfh cell maintenance. BCL6 impinged on Tfh calcium signaling and also controlled Tfh entanglement with and CD40L delivery to B cells. Amounts of BCL6 protein and nominal frequencies of Tfh cells markedly changed within hours after strengths of T-B cell interactions were altered in vivo, while CD40L overexpression rectified both defective GC formation and Tfh cell maintenance because of the BCL6 haploinsufficiency. Our results reveal BCL6 functions in Tfh cells that are essential for GC formation and suggest that BCL6 helps maintain Tfh cell phenotypes in a T cell non-autonomous manner.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , T Follicular Helper Cells/immunology , Animals , Mice
9.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36206740

ABSTRACT

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium , Cation Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Adenosine Triphosphate , Animals , Calcium/metabolism , Calcium Channels , Calcium-Binding Proteins/genetics , Disulfides/metabolism , Humans , Mice , Mitochondrial Membrane Transport Proteins/genetics , Reactive Oxygen Species/metabolism
10.
Physiol Rev ; 102(3): 1159-1210, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34927454

ABSTRACT

Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom, as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive CaV1.2 and CaV1.3 channels to obligatory dimeric assembly and gating of voltage-gated NaV1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine-tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pacemaking activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences, and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.


Subject(s)
Ion Channel Gating , Ryanodine Receptor Calcium Release Channel , Action Potentials , Humans , Ion Channel Gating/physiology , Neurons
11.
Physiol Rev ; 102(1): 209-268, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34280054

ABSTRACT

Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs and depolarization of the plasma membrane for a particular RyR subtype expressed in skeletal muscle. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3 Å. The available structures have provided many new mechanistic insights into the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of posttranslational modifications, additional binding partners, and the higher order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Cell Membrane/metabolism , Humans , Muscle, Skeletal/metabolism
12.
Physiol Rev ; 101(4): 1691-1744, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33949875

ABSTRACT

This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.


Subject(s)
Adenosine Triphosphate/physiology , Calcium/physiology , Pancreas, Exocrine/physiology , Pancreatic Diseases/physiopathology , Animals , Calcium Signaling , Humans , Pancreas, Exocrine/physiopathology
13.
EMBO J ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261663

ABSTRACT

The mitochondrial calcium uniporter channel (MCUC) mediates mitochondrial calcium entry, regulating energy metabolism and cell death. Although several MCUC components have been identified, the molecular basis of mitochondrial calcium signaling networks and their remodeling upon changes in uniporter activity have not been assessed. Here, we map the MCUC interactome under resting conditions and upon chronic loss or gain of mitochondrial calcium uptake. We identify 89 high-confidence interactors that link MCUC to several mitochondrial complexes and pathways, half of which are associated with human disease. As a proof-of-concept, we validate the mitochondrial intermembrane space protein EFHD1 as a binding partner of the MCUC subunits MCU, EMRE, and MCUB. We further show a MICU1-dependent inhibitory effect of EFHD1 on calcium uptake. Next, we systematically survey compensatory mechanisms and functional consequences of mitochondrial calcium dyshomeostasis by analyzing the MCU interactome upon EMRE, MCUB, MICU1, or MICU2 knockdown. While silencing EMRE reduces MCU interconnectivity, MCUB loss-of-function leads to a wider interaction network. Our study provides a comprehensive and high-confidence resource to gain insights into players and mechanisms regulating mitochondrial calcium signaling and their relevance in human diseases.

14.
EMBO J ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375537

ABSTRACT

Hypoglycemia triggers autonomic and endocrine counter-regulatory responses to restore glucose homeostasis, a response that is impaired in patients with diabetes and its long-term complication hypoglycemia-associated autonomic failure (HAAF). We show that insulin-evoked hypoglycemia is severely aggravated in mice lacking the cation channel proteins TRPC1, TRPC4, TRPC5, and TRPC6, which cannot be explained by alterations in glucagon or glucocorticoid action. By using various TRPC compound knockout mouse lines, we pinpointed the failure in sympathetic counter-regulation to the lack of the TRPC5 channel subtype in adrenal chromaffin cells, which prevents proper adrenaline rise in blood plasma. Using electrophysiological analyses, we delineate a previously unknown signaling pathway in which stimulation of PAC1 or muscarinic receptors activates TRPC5 channels in a phospholipase-C-dependent manner to induce sustained adrenaline secretion as a crucial step in the sympathetic counter response to insulin-induced hypoglycemia. By comparing metabolites in the plasma, we identified reduced taurine levels after hypoglycemia induction as a commonality in TRPC5-deficient mice and HAAF patients.

15.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32645368

ABSTRACT

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Subject(s)
Calcineurin/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Active Transport, Cell Nucleus , Amino Acid Motifs , Biotinylation , Centrosome/metabolism , Computer Simulation , HEK293 Cells , HeLa Cells , Humans , Mass Spectrometry , Phosphoric Monoester Hydrolases/chemistry , Phosphorylation , Protein Interaction Maps , Proteome/metabolism , Receptor, Notch1/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
16.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31053472

ABSTRACT

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Subject(s)
AMP-Activated Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calcium/metabolism , DNA Repair Enzymes/genetics , DNA Repair , DNA Replication , Exodeoxyribonucleases/genetics , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Calcium Signaling/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Chromatin/chemistry , Chromatin/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Osteoblasts/cytology , Osteoblasts/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
Proc Natl Acad Sci U S A ; 121(36): e2407765121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39207733

ABSTRACT

Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.


Subject(s)
Calcium , Cytosol , Erythrocytes , Ion Channels , Ion Channels/metabolism , Humans , Erythrocytes/metabolism , Calcium/metabolism , Cytosol/metabolism , Hemolysis
18.
Proc Natl Acad Sci U S A ; 121(13): e2312172121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502705

ABSTRACT

The endoplasmic reticulum (ER) forms an interconnected network of tubules stretching throughout the cell. Understanding how ER functionality relies on its structural organization is crucial for elucidating cellular vulnerability to ER perturbations, which have been implicated in several neuronal pathologies. One of the key functions of the ER is enabling Ca[Formula: see text] signaling by storing large quantities of this ion and releasing it into the cytoplasm in a spatiotemporally controlled manner. Through a combination of physical modeling and live-cell imaging, we demonstrate that alterations in ER shape significantly impact its ability to support efficient local Ca[Formula: see text] releases, due to hindered transport of luminal content within the ER. Our model reveals that rapid Ca[Formula: see text] release necessitates mobile luminal buffer proteins with moderate binding strength, moving through a well-connected network of ER tubules. These findings provide insight into the functional advantages of normal ER architecture, emphasizing its importance as a kinetically efficient intracellular Ca[Formula: see text] delivery system.


Subject(s)
Endoplasmic Reticulum , Signal Transduction , Endoplasmic Reticulum/metabolism , Neurons/metabolism , Calcium/metabolism , Calcium Signaling
19.
Proc Natl Acad Sci U S A ; 121(16): e2318155121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38602917

ABSTRACT

Tissue development occurs through a complex interplay between many individual cells. Yet, the fundamental question of how collective tissue behavior emerges from heterogeneous and noisy information processing and transfer at the single-cell level remains unknown. Here, we reveal that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell signaling through the spatiotemporal establishment of an intermediate-scale of transient multicellular communication communities over the course of tissue development. We demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex vivo cultured, live developing Drosophila hematopoietic organ, the lymph gland. Recurrent activation of these transient signaling communities defined self-organized signaling "hotspots" that gradually formed over the course of larva development. These hotspots receive and transmit information to facilitate repetitive interactions with nonhotspot neighbors. Overall, this work bridges the scales between single-cell and emergent group behavior providing key mechanistic insight into how cells establish tissue-scale communication networks.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Hematopoiesis , Signal Transduction , Cell Communication , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
20.
Trends Biochem Sci ; 47(3): 235-249, 2022 03.
Article in English | MEDLINE | ID: mdl-34810081

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action.


Subject(s)
Calcium Channels , Carrier Proteins , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Carrier Proteins/metabolism , Lysosomes/metabolism , NADP/analogs & derivatives , NADP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL