Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 737
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37467750

ABSTRACT

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Subject(s)
Charcot-Marie-Tooth Disease , Neurodevelopmental Disorders , Animals , Humans , Mice , Cell Line , Charcot-Marie-Tooth Disease/genetics , DEAD-box RNA Helicases/genetics , Dichlorodiphenyl Dichloroethylene , DNA Helicases , Mammals , Neoplasm Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 120(44): e2313010120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37878717

ABSTRACT

Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.


Subject(s)
Charcot-Marie-Tooth Disease , rab GTP-Binding Proteins , Animals , Mice , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , Charcot-Marie-Tooth Disease/metabolism , Sensory Receptor Cells/metabolism , Mutation , Mitochondria/metabolism , Lysosomes/metabolism , Guanosine Triphosphate/metabolism
3.
EMBO J ; 40(8): e103811, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33644875

ABSTRACT

HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C-terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient-derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V-containing proteins. We identified multiple IxI/V-bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V-binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein-protein interactions.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Adult , Binding Sites , Cells, Cultured , HeLa Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Dynamics Simulation , Motor Neurons/cytology , Motor Neurons/metabolism , Mutation, Missense , Protein Binding , Protein Multimerization
4.
Brain ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39021275

ABSTRACT

Dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) cause diverse and largely distinct channelopathies, including inherited forms of neuromuscular disease, skeletal dysplasias, and arthropathy. Pathogenic TRPV4 mutations cause gain of ion channel function and toxicity that can be rescued by small molecule TRPV4 antagonists in cellular and animal models, suggesting that TRPV4 antagonism could be therapeutic for patients. Numerous variants in TRPV4 have been detected with targeted and whole exome/genome sequencing, but for the vast majority, their pathogenicity remains unclear. Here, we used a combination of clinical information and experimental structure-function analyses to evaluate 30 TRPV4 variants across various functional protein domains. We report clinical features of seven patients with TRPV4 variants of unknown significance and provide extensive functional characterization of these and an additional 17 variants, including structural position, ion channel function, subcellular localization, expression level, cytotoxicity, and protein-protein interactions. We find that gain-of-function mutations within the TRPV4 intracellular ankyrin repeat domain target charged amino acid residues important for RhoA interaction, whereas ankyrin repeat domain residues outside of the RhoA interface have normal or reduced ion channel activity. We further identify a cluster of gain-of-function variants within the intracellular intrinsically disordered region that may cause toxicity via altered interactions with membrane lipids. In contrast, assessed variants in the transmembrane domain and other regions of the intrinsically disordered region do not cause gain of function and are likely benign. Clinical features associated with gain of function and cytotoxicity include congenital onset of disease, vocal cord weakness, and motor predominant disease, whereas patients with likely benign variants often demonstrated late-onset and sensory-predominant disease. These results provide a framework for assessing additional TRPV4 variants with respect to likely pathogenicity, which will yield critical information to inform patient selection for future clinical trials for TRPV4 channelopathies.

5.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938188

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

6.
Brain ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538210

ABSTRACT

Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect approximately 10,000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord-/-, Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioral tests as well as biochemical, physiological, and comprehensive histological examinations. Sord-/- rats had remarkably increased levels of sorbitol in serum, cerebrospinal fluid (CSF), and peripheral nerve. Moreover, serum from Sord-/- rats contained significantly increased levels of neurofilament light chain, NfL, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord-/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding - enlarged "ballooned" myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord-/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.

7.
Brain ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917025

ABSTRACT

Dominant missense mutations of the calcium-permeable cation channel TRPV4 cause Charcot-Marie-Tooth disease (CMT) type 2C and two forms of distal spinal muscular atrophy. These conditions are collectively referred to as TRPV4-related neuromuscular disease and share features of motor greater than sensory dysfunction and frequent vocal fold weakness. Pathogenic variants lead to gain of ion channel function that can be rescued by TRPV4 antagonists in cellular and animal models. As small molecule TRPV4 antagonists have proven safe in trials for other disease indications, channel inhibition is a promising therapeutic strategy for TRPV4 patients. However, the current knowledge of the clinical features and natural history of TRPV4-related neuromuscular disease is insufficient to enable rational clinical trial design. To address these issues, we developed a TRPV4 patient database and administered a TRPV4-specific patient questionnaire. Here, we report demographic and clinical information, including CMT examination scores (CMTES), from 68 patients with known pathogenic TRPV4 variants, 40 of whom also completed the TRPV4 patient questionnaire. TRPV4 patients showed a bimodal age of onset, with the largest peak occurring in the first 2 years of life. Compared to CMT1A patients, TRPV4 patients showed distinct symptoms and signs, manifesting more ambulatory difficulties and more frequent involvement of proximal arm and leg muscles. Although patients reported fewer sensory symptoms, sensory dysfunction was often detected clinically. Many patients were affected by vocal fold weakness (55%) and shortness of breath (55%), and 11% required ventilatory support. Skeletal abnormalities were common, including scoliosis (64%), arthrogryposis (33%), and foot deformities. Strikingly, patients with infantile onset of disease showed less sensory involvement and less progression of symptoms. These results highlight distinctive clinical features in TRPV4 patients, including motor-predominant disease, proximal arm and leg weakness, severe ambulatory difficulties, vocal fold weakness, respiratory dysfunction, and skeletal involvement. In addition, patients with infantile onset of disease appeared to have a distinct phenotype with less apparent disease progression based on CMTES. These collective observations indicate that clinical trial design for TRPV4-related neuromuscular disease should include outcome measures that reliably capture non-length dependent motor dysfunction, vocal fold weakness, and respiratory disease.

8.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916773

ABSTRACT

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Subject(s)
Formins , Mitosis , Podocytes , Transcriptome , Humans , Mitosis/genetics , Podocytes/metabolism , Podocytes/pathology , Transcriptome/genetics , Formins/genetics , Formins/metabolism , Cell Death/genetics , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/metabolism , Mutation , Cell Nucleus/metabolism , Cell Nucleus/genetics , Cell Line
9.
J Biol Chem ; 299(2): 102839, 2023 02.
Article in English | MEDLINE | ID: mdl-36581210

ABSTRACT

Data from gnomAD indicate that a missense mutation encoding the T118M variation in human peripheral myelin protein 22 (PMP22) is found in roughly one of every 75 genomes of western European lineage (1:120 in the overall human population). It is unusual among PMP22 variants that cause Charcot-Marie-Tooth (CMT) disease in that it is not 100% penetrant. Here, we conducted cellular and biophysical studies to determine why T118M PMP22 predisposes humans to CMT, but with only incomplete penetrance. We found that T118M PMP22 is prone to mistraffic but differs even from the WT protein in that increased expression levels do not result in a reduction in trafficking efficiency. Moreover, the T118M mutant exhibits a reduced tendency to form large intracellular aggregates relative to other disease mutants and even WT PMP22. NMR spectroscopy revealed that the structure and dynamics of T118M PMP22 resembled those of WT. These results show that the main consequence of T118M PMP22 in WT/T118M heterozygous individuals is a reduction in surface-trafficked PMP22, unaccompanied by formation of toxic intracellular aggregates. This explains the incomplete disease penetrance and the mild neuropathy observed for WT/T118M CMT cases. We also analyzed BioVU, a biobank linked to deidentified electronic medical records, and found a statistically robust association of the T118M mutation with the occurrence of long and/or repeated episodes of carpal tunnel syndrome. Collectively, our results illuminate the cellular effects of the T118M PMP22 variation leading to CMT disease and indicate a second disorder for which it is a risk factor.


Subject(s)
Charcot-Marie-Tooth Disease , Myelin Proteins , Humans , Charcot-Marie-Tooth Disease/genetics , Mutation, Missense , Myelin Proteins/genetics , Genetic Predisposition to Disease
10.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583640

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Subject(s)
Axonal Transport , Brain-Derived Neurotrophic Factor , Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Humans , Mice, Transgenic , Muscle, Skeletal/metabolism , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mutation
11.
Biochem Soc Trans ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979632

ABSTRACT

Underexpression, overexpression, and point mutations in peripheral myelin protein 22 (PMP22) cause most cases of Charcot-Marie-Tooth disease (CMTD). While its exact functions remain unclear, PMP22 is clearly essential for formation and maintenance of healthy myelin in the peripheral nervous system. This review explores emerging evidence for roles of PMP22 in cholesterol homeostasis. First, we highlight dysregulation of lipid metabolism in PMP22-based forms of CMTD and recently-discovered interactions between PMP22 and cholesterol biosynthesis machinery. We then examine data that demonstrates PMP22 and cholesterol co-traffic in cells and co-localize in lipid rafts, including how disease-causing PMP22 mutations result in aberrations in cholesterol localization. Finally, we examine roles for interactions between PMP22 and ABCA1 in cholesterol efflux. Together, this emerging body of evidence suggests that PMP22 plays a role in facilitating enhanced cholesterol synthesis and trafficking necessary for production and maintenance of healthy myelin.

12.
Muscle Nerve ; 69(3): 354-361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38156498

ABSTRACT

INTRODUCTION/AIMS: People with Charcot-Marie-Tooth Disease (CMT) frequently report problems with balance, which lead to an increased risk of falls. Evidence is emerging of training interventions to improve balance for people with CMT, but to date all have relied on clinic-based treatment and equipment. This proof-of-concept study explored whether a multi-modal program of proprioceptive rehabilitation and strength training can be delivered at home, to improve balance performance in people with CMT Type 1A. METHODS: Fourteen participants with CMT Type 1A were recruited into this randomized, two-arm study. Baseline assessments included measures of disease severity, posturography, physical function, and patient-reported outcome measurements. All participants received one falls education session. Participants were randomized to either 12 weeks of balance training or 12 weeks of usual activities. The intervention comprised a home-based, multi-sensory balance training and proximal strengthening program, supported by three home visits from a physiotherapist. RESULTS: Thirteen participants completed the study. The intervention was successfully implemented and well tolerated, with high participation levels. Functional measures of balance and walking showed strong effect sizes in favor of the training group. Posturography testing demonstrated moderate improvements in postural stability favoring the intervention group. Inconsistent changes were seen in lower limb strength measures. DISCUSSION: The intervention was feasible to implement and safe, with some evidence of improvement in balance performance. This supports future studies to expand this intervention to larger trials of pragmatic, home-delivered programs through current community rehabilitation services and supported self-management pathways.


Subject(s)
Charcot-Marie-Tooth Disease , Resistance Training , Humans , Charcot-Marie-Tooth Disease/therapy , Exercise Therapy , Proof of Concept Study , Physical Therapy Modalities , Postural Balance
13.
Eur J Neurol ; : e16416, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051710

ABSTRACT

BACKGROUND AND PURPOSE: Pathogenic variants of the glycyl-tRNA synthetase 1 (GARS1) gene have been described as a cause of Charcot-Marie-Tooth disease type 2D, motor axonal neuropathy with upper limb predominance (distal hereditary motor neuropathy [dHMN] type V), and infantile spinal muscular atrophy. METHODS: This cross-sectional, retrospective, observational study was carried out on 12 patients harboring the c.794C>T (p.Ser265Phe) missense pathogenic variant in GARS1. The patients' clinical data, nerve conduction studies, magnetic resonance imaging (MRI), and intraepidermal nerve fiber density in skin biopsies were reviewed. RESULTS: The mean age at onset was 9.5 years; the intrinsic hand muscles were affected before or at the same time as the distal leg musculature. The clinical examination revealed greater weakness of the distal muscles, with a more pronounced involvement of the thenar complex and the first dorsal interosseous in upper limbs. Electrophysiological studies were concordant with an exclusively motor axonal neuropathy. A pathologic split hand index was found in six patients. Muscle MRI showed predominant fatty infiltration and atrophy of the anterolateral and superficial posterior compartment of the legs. Most patients reported distal pinprick sensory loss. A reduced intraepidermal nerve fiber density was evident in skin biopsies from proximal and distal sites in nine patients. CONCLUSIONS: GARS1 variants may produce a dHMN phenotype with "split hand" and sensory disturbances, even when sensory nerve conduction studies are normal. This could be explained by a dysfunction of sensory neurons in the dorsal ganglion that is reflected as a reduction of dermal nerve endings in skin biopsies without a distal gradient.

14.
J Peripher Nerv Syst ; 29(2): 262-274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860315

ABSTRACT

BACKGROUND: Loss-of-function variants in MME (membrane metalloendopeptidase) are a known cause of recessive Charcot-Marie-Tooth Neuropathy (CMT). A deep intronic variant, MME c.1188+428A>G (NM_000902.5), was identified through whole genome sequencing (WGS) of two Australian families with recessive inheritance of axonal CMT using the seqr platform. MME c.1188+428A>G was detected in a homozygous state in Family 1, and in a compound heterozygous state with a known pathogenic MME variant (c.467del; p.Pro156Leufs*14) in Family 2. AIMS: We aimed to determine the pathogenicity of the MME c.1188+428A>G variant through segregation and splicing analysis. METHODS: The splicing impact of the deep intronic MME variant c.1188+428A>G was assessed using an in vitro exon-trapping assay. RESULTS: The exon-trapping assay demonstrated that the MME c.1188+428A>G variant created a novel splice donor site resulting in the inclusion of an 83 bp pseudoexon between MME exons 12 and 13. The incorporation of the pseudoexon into MME transcript is predicted to lead to a coding frameshift and premature termination codon (PTC) in MME exon 14 (p.Ala397ProfsTer47). This PTC is likely to result in nonsense mediated decay (NMD) of MME transcript leading to a pathogenic loss-of-function. INTERPRETATION: To our knowledge, this is the first report of a pathogenic deep intronic MME variant causing CMT. This is of significance as deep intronic variants are missed using whole exome sequencing screening methods. Individuals with CMT should be reassessed for deep intronic variants, with splicing impacts being considered in relation to the potential pathogenicity of variants.


Subject(s)
Charcot-Marie-Tooth Disease , Metalloendopeptidases , RNA Splicing , Adult , Female , Humans , Male , Charcot-Marie-Tooth Disease/genetics , Introns , Metalloendopeptidases/genetics , Mutation , Pedigree
15.
J Peripher Nerv Syst ; 29(1): 107-110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329138

ABSTRACT

BACKGROUND AND AIMS: The parent-proxy reports can offer complementary informations or be the only source of Quality of Life measurement in young children. The aim of this study was to provide and validate the Italian version of the recently published parent-proxy pCMT-QOL for patients aged 8-18 years old, making it available for possible trials in Italian speaking children. METHODS: The English-language instrument was translated and adapted into the Italian language using standard procedures: translation, transcultural adaptation, and back-translation. Parent-proxy pCMT-QOL was administered to parents of patients with a genetic diagnosis of CMT, aged 8-18 years old. All parents were retested 2 weeks later to assess reliability. RESULTS: A total of 21 parents of CMT patients (18 CMT1A, 2 CMT2A, 1 CMT2K) were assessed during their children clinical appointments. The Italian-pCMT-QOL showed a high test-retest reliability; none of the parents had any difficulties with the completion of the questionnaire and no further revisions were necessary after completion. INTERPRETATION: The Italian parent-proxy pCMT-QOL is a reliable, culturally adapted, and comparable version of the original English instrument. This questionnaire will improve the quality of the follow-up and will make it possible to monitor more accurately the severity of the disease in Italian-speaking families.


Subject(s)
Parents , Quality of Life , Humans , Child , Child, Preschool , Adolescent , Reproducibility of Results , Surveys and Questionnaires , Language , Italy , Psychometrics
16.
J Peripher Nerv Syst ; 29(2): 232-242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705839

ABSTRACT

BACKGROUND AND AIMS: Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause axonal or demyelinating Charcot-Marie-Tooth disease (CMT) with autosomal dominant or recessive inheritance. In this study, we aim to report the genotypic and phenotypic features of GDAP1-related CMT in a Chinese cohort. METHODS: Clinical, neurophysiological, genetic data, and available muscle/brain imaging information of 28 CMT patients with GDAP1 variants were retrospectively collected. RESULTS: We identified 16 GDAP1 pathogenic variants, among which two novel variants c.980dup(p.L328FfsX25) and c.480+4T>G were first reported. Most patients (16/28) presented with AR or AD CMT2K phenotype. Clinical characteristics in our cohort demonstrated that the AR patients presented earlier onset, more severe phenotype compared with the AD patients. Considerable intra-familial phenotypic variability was observed among three AD families. Muscle atrophy and fatty infiltration in the lower extremity were detected by Muscle magnetic resonance imaging (MRI) scans in four patients. MRI showed two AR patients showed more severe muscle involvement of the posterior compartment than those of the anterolateral compartment in the calf. One patient carrying Q38*/H256R variants accompanied with mild periventricular leukoaraiosis. CONCLUSIONS: In this study, we conducted an analysis of clinical features of the GDAP1-related CMT patients, expanded the mutation spectrum in GDAP1 by reporting two novel variants, and presented the prevalent occurrence of the H256R mutation in China. The screening of GDAP1 should be particularly emphasized in Chinese patients with CMT2, given the incomplete penetrance and pathogenic inheritance patterns involving dominant and recessive modes.


Subject(s)
Charcot-Marie-Tooth Disease , Mutation , Nerve Tissue Proteins , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Charcot-Marie-Tooth Disease/diagnostic imaging , Male , Female , Adult , Adolescent , Young Adult , Child , Nerve Tissue Proteins/genetics , Middle Aged , Asian People/genetics , China , Retrospective Studies , Pedigree , Child, Preschool , Phenotype , East Asian People
17.
J Peripher Nerv Syst ; 29(2): 243-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772550

ABSTRACT

BACKGROUND AND AIMS: This study aimed to report nine Charcot-Marie-Tooth disease (CMT) families with six novel IGHMBP2 mutations in our CMT2 cohort and to summarize the genetic and clinical features of all AR-CMT2S patients reported worldwide. METHODS: General information, clinical and neurophysiological data of 275 axonal CMT families were collected. Genetic screening was performed by inherited peripheral neuropathy related genes panel or whole exome sequencing. The published papers reporting AR-CMT2S from 2014 to 2023 were searched in Pubmed and Wanfang databases. RESULTS: In our CMT2 cohort, we detected 17 AR-CMT2S families carrying IGHMBP2 mutations and eight were published previously. Among these, c.743 T > A (p.Val248Glu), c.884A > G (p.Asp295Gly), c.1256C > A (p.Ser419*), c.2598_2599delGA (p.Lys868Sfs*16), c.1694_1696delATG (p.Asp565del) and c.2509A > T (p.Arg837*) were firstly reported. These patients prominently presented with early-onset typical axonal neuropathy and without respiratory dysfunction. So far, 56 AR-CMT2S patients and 57 different mutations coming from 43 families have been reported in the world. Twenty-nine of 32 missense mutations were clustered in helicase domain and ATPase region. The age at onset ranged from 0.11to 20 years (Mean ± SD: 3.43 ± 3.88 years) and the majority was infantile-onset (<2 years). The initial symptoms included weakness of limbs (19, 29.7%), delayed milestones (12, 18.8%), gait disturbance (11, 17.2%), feet deformity (8, 12.5%), feet drop (8, 12.5%), etc. INTERPRETATION: AR-CMT2S accounted for 6.2% in our CMT2 cohort. We firstly reported six novel IGHMBP2 mutations which expanded the genotypic spectrum of AR-CMT2S. Furthermore, 17 AR-CMT2S families could provide more resources for natural history study, drug research and development.


Subject(s)
Charcot-Marie-Tooth Disease , Genetic Association Studies , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Female , Male , Adult , China/epidemiology , Cohort Studies , Adolescent , Child , Mutation , Transcription Factors/genetics , Young Adult , DNA-Binding Proteins/genetics , Middle Aged , Pedigree , Child, Preschool
18.
J Peripher Nerv Syst ; 29(2): 275-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769024

ABSTRACT

BACKGROUND AND AIMS: Pathogenic variants in the NARS1 gene, which encodes for the asparaginyl-tRNA synthetase1 (NARS1) enzyme, were associated with complex central and peripheral nervous system phenotypes. Recently, Charcot-Marie-Tooth (CMT) disease has been linked to heterozygous pathogenic variants in NARS1 in nine patients. Here, we report two brothers and their mother from a French family with distal hereditary motor neuropathy (dHMN) carrying a previously unreported NARS1 variant. METHODS: The NARS1 variant (c.1555G>C; p.(Gly519Arg)) was identified through whole-genome sequencing (WGS) performed on the family members. Clinical findings, nerve conduction studies (NCS), needle electromyography (EMG), and functional assays in yeast complementation assays are reported here. RESULTS: The family members showed symptoms of dHMN, including distal weakness and osteoarticular deformities. They also exhibited brisk reflexes suggestive of upper motor neuron involvement. All patients were able to walk independently at the last follow-up. NCS and EMG confirmed pure motor neuropathy. Functional assays in yeast confirmed a loss-of-function effect of the variant on NARS1 activity. INTERPRETATION: Our findings expand the clinical spectrum of NARS1-associated neuropathies, highlighting the association of NARS1 mutations with dHMN. The benign disease course observed in our patients suggests a slowly progressive phenotype. Further reports could contribute to a more comprehensive understanding of the spectrum of NARS1-associated neuropathies.


Subject(s)
Amino Acyl-tRNA Synthetases , Hereditary Sensory and Motor Neuropathy , Adult , Female , Humans , Male , Middle Aged , Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , France , Hereditary Sensory and Motor Neuropathy/genetics , Hereditary Sensory and Motor Neuropathy/physiopathology , Pedigree
19.
J Peripher Nerv Syst ; 29(2): 213-220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551018

ABSTRACT

BACKGROUND: Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS: Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS: Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS: The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION: Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.


Subject(s)
Charcot-Marie-Tooth Disease , Disease Models, Animal , Histone Deacetylase 6 , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Histone Deacetylase 6/genetics , Mice , Humans , Sciatic Nerve , Mice, Knockout , Gene Deletion , Male , Tubulin/metabolism , Tubulin/genetics , Glycine-tRNA Ligase/genetics , Neural Conduction/physiology , Neural Conduction/drug effects
20.
J Peripher Nerv Syst ; 29(2): 202-212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581130

ABSTRACT

BACKGROUND: Caused by duplications of the gene encoding peripheral myelin protein 22 (PMP22), Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common hereditary neuropathy. Despite this shared genetic origin, there is considerable variability in clinical severity. It is hypothesized that genetic modifiers contribute to this heterogeneity, the identification of which may reveal novel therapeutic targets. In this study, we present a comprehensive analysis of clinical examination results from 1564 CMT1A patients sourced from a prospective natural history study conducted by the RDCRN-INC (Inherited Neuropathy Consortium). Our primary objective is to delineate extreme phenotype profiles (mild and severe) within this patient cohort, thereby enhancing our ability to detect genetic modifiers with large effects. METHODS: We have conducted large-scale statistical analyses of the RDCRN-INC database to characterize CMT1A severity across multiple metrics. RESULTS: We defined patients below the 10th (mild) and above the 90th (severe) percentiles of age-normalized disease severity based on the CMT Examination Score V2 and foot dorsiflexion strength (MRC scale). Based on extreme phenotype categories, we defined a statistically justified recruitment strategy, which we propose to use in future modifier studies. INTERPRETATION: Leveraging whole genome sequencing with base pair resolution, a future genetic modifier evaluation will include single nucleotide association, gene burden tests, and structural variant analysis. The present work not only provides insight into the severity and course of CMT1A, but also elucidates the statistical foundation and practical considerations for a cost-efficient and straightforward patient enrollment strategy that we intend to conduct on additional patients recruited globally.


Subject(s)
Charcot-Marie-Tooth Disease , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Humans , Adult , Male , Female , Middle Aged , Adolescent , Young Adult , Severity of Illness Index , Child , Myelin Proteins/genetics , Patient Selection , Phenotype , Aged , Genes, Modifier , Child, Preschool
SELECTION OF CITATIONS
SEARCH DETAIL