Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 28(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375148

ABSTRACT

MOF-based luminescent sensors have garnered considerable attention due to their potential in recognition and discrimination with high sensitivity, selectivity, and fast response in the last decades. Herein, this work describes the bulk preparation of a novel luminescent homochiral MOF, namely, [Cd(s-L)](NO3)2 (MOF-1), from an enantiopure pyridyl-functionalized ligand with rigid binaphthol skeleton under mild synthetic condition. Except for the features of porosity and crystallinity, the MOF-1 has also been characterized with water-stability, luminescence, and homochirality. Most important, the MOF-1 exhibits highly sensitive molecular recognition toward the4-nitrobenzoic acid (NBC) and moderate enantioselective detection of proline, arginine, and 1-phenylethanol.

2.
Se Pu ; 42(1): 1-12, 2024 Jan 08.
Article in Zh | MEDLINE | ID: mdl-38197202

ABSTRACT

Enantiomers typically show different pharmacological, toxicological, and physiological properties. Thus, the preparation of enantiopure compounds is of great significance for human health and sustainable development. Compared with asymmetric catalysis, enantiomeric separation is simpler, faster, and more efficient; as such, it has become the preferred method for obtaining pure enantiomers. At present, enantiomeric separation methods mainly include chromatography, nanochannel membrane separation, selective adsorption, and recrystallization. In particular, gas chromatography (GC) plays an important role in enantioseparation because of its high sensitivity, excellent reproducibility, and outstanding processing capacity for various enantiomers. The stationary phase is key to the separation efficiency of GC, and more efficient, stable, and cost-effective materials that could serve as stationary phases are constantly being explored. Organic frameworks, such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs), porous organic cages (POCs), metal-organic cages (MOCs), and hydrogen-bonded organic frameworks (HOFs), possess large specific surface areas, high porosities, tunable pore sizes, and easy functionalization, rendering them promising candidates for the separation of mixed analytes. Research has shown that the use of organic frameworks as stationary phases for GC results in excellent column efficiency and high resolution for various analytes, including n-alkanes, n-alcohols, polycyclic aromatic hydrocarbons, positional isomers, and organic fluorides. Furthermore, organic frameworks can be prepared as chiral stationary phases for GC by the intelligent introduction of a chiral moiety, thereby enabling the efficient separation of enantiomers. Synthetic strategies for chiral organic frameworks are primarily categorized as post-synthesis or bottom-up approaches. In general, the post-synthesis strategy can introduce various chiral sites to the framework; however, the distribution of chiral sites may not be uniform, and the ordered framework may be destroyed during the post-synthesis process. The bottom-up strategy allows for the uniform and precise distribution of chiral sites in the framework, but the synthesis of chiral monomers and the constraint between asymmetry and crystallinity limit its development. Chiral induction has been proposed as an alternative strategy for synthesizing chiral organic frameworks. The use of this strategy has led to the successful preparation of organic frameworks with abundant chiral sites and excellent crystallinity. Dynamic coating and in situ growth are the main approaches used to transform the as-prepared chiral organic frameworks into stationary phases. Notably, the in situ growth approach can yield chiral COF/MOF-coated capillary columns that provide high resolution for the separation of enantiomers with excellent repeatability and reproducibility. Nevertheless, owing to the slightly complex pretreatment process and the difficulty of synthesizing chiral organic frameworks, the in situ growth approach has not yet been widely applied. Owing to their excellent solvent processing performance, POCs, MOCs, and HOFs can be easily coated on the inner walls of columns to form membranes via dynamic or static coating. A series of enantiomers have been successfully separated and analyzed by immobilizing chiral COFs, MOFs, POCs, MOCs, and HOFs on GC capillary columns, demonstrating the great potential of chiral organic frameworks for enantiomeric separation. In general, the mechanisms by which chiral organic frameworks recognize enantiomers could be mainly categorized as van der Waals interactions, hydrogen bonding, π-π interactions, and size-exclusion effects. While molecular simulations can offer some insights into these recognition mechanisms, clarifying these mechanisms based on effective characterization remains challenging. In summary, organic frameworks show outstanding advantages for enantiomer separation. Given breakthroughs in synthetic strategies for chiral organic frameworks and the in-depth study of chiral recognition mechanisms, chiral organic frameworks may be expected to become an important aspect in the field of chiral materials, further realizing the large-scale analysis and production of chiral analytes. A total of 64 references, most of which are from the American Chemical Society, Springer Nature, Wiley Online Library, and Elsevier databases, are cited in this review.

3.
J Chromatogr A ; 1722: 464911, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626541

ABSTRACT

In this study, we have synthesised a chiral l-hyp-Ni/Fe@SiO2 composite as a chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) for the first time. This was achieved by coating two-dimensional (2D) chiral metal-organic framework nanosheets (MONs) l-hyp-Ni/Fe onto the surface of activated SiO2 microspheres using the "wrapped in net" method. The separation efficiency of the l-hyp-Ni/Fe chromatographic column was systematically evaluated in normal-phase HPLC (NP-HPLC) and reversed-phase HPLC (RP-HPLC) configurations, employing various racemates as analytes. The findings revealed that 16 chiral compounds were separated using NP-HPLC, and five were separated using RP-HPLC, encompassing alcohols, amines, ketones, esters, alkanes, ethers, amino acids and sulfoxides. Notably, the resolution (Rs) of nine chiral compounds exceeded 1.5, indicating baseline separation. Furthermore, the resolution performance of the l-hyp-Ni/Fe@SiO2-packed column was compared with that of Chiralpak AD-H. It was observed that certain enantiomers, which either could not be resolved or were inadequately separated on the Chiralpak AD-H column, attained separation on the 2D chiral MONs column. These findings suggest a complementary relationship between the two columns in racemate separation, with their combined application facilitating the resolution of a broader spectrum of chiral compounds. In addition, baseline separation was achieved for five positional isomers on the l-hyp-Ni/Fe@SiO2-packed column. The effects of the analyte mass and column temperature on the resolution were also examined. Moreover, during HPLC analysis, the l-hyp-Ni/Fe columns demonstrated commendable repeatability, stability and reproducibility in enantiomer separation. This research not only advances the utilisation of 2D chiral MONs as CSPs but also expands their applications in the separation sciences.


Subject(s)
Metal-Organic Frameworks , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Metal-Organic Frameworks/chemistry , Stereoisomerism , Nanostructures/chemistry , Iron/chemistry , Nickel/chemistry
4.
J Chromatogr A ; 1699: 464029, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37119710

ABSTRACT

A chiral metal-organic framework L-Histidine-Zeolitic imidazolate framework-67 (L-His-ZIF-67) was synthesized by the mixture of chiral organic ligand L-histidine and non-chiral organic ligand 2-methylimidazole directly, and to the author's knowledge, the chiral L-His-ZIF-67 coated capillary column we prepared has still not been reported to date in the field of capillary electrophoresis. This chiral metal-organic frameworks material was used as the chiral stationary phase for enantioseparation of drugs by open-tubular capillary electrochromatography. The separation conditions such as pH value, buffer concentration and proportion of organic modifier were optimized. Under optimal conditions, the established enantioseparation system achieved good separation effect, and the resolution of five chiral drugs: esmolol (7.93), nefopam (3.03), salbutamol (2.42), scopolamine (1.08) and sotalol (0.81). In addition, the chiral recognition mechanism of L-His-ZIF-67 was elucidated by a series of mechanism experiments, and the specific interaction force was preliminarily speculated.


Subject(s)
Capillary Electrochromatography , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Capillary Electrochromatography/methods , Stereoisomerism , Ligands , Histidine
SELECTION OF CITATIONS
SEARCH DETAIL