Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(3): 1001-1008, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38198561

ABSTRACT

We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.

2.
Nano Lett ; 24(3): 929-934, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38173237

ABSTRACT

Control of the angular momentum of light is a key technology for next-generation nano-optical devices and optical communications, including quantum communication and encoding. We propose an approach to controllably generate circularly polarized light from a circular hole in a metal film using an electron beam by coherently exciting transition radiation and light scattering from the hole through surface plasmon polaritons. The circularly polarized light generation is confirmed by fully polarimetric four-dimensional cathodoluminescence mapping, where angle-resolved spectra are simultaneously obtained. The obtained intensity and Stokes maps show clear interference fringes as well as almost fully circularly polarized light generation with controllable parities by the electron beam position. By applying this approach to a three-hole system, a vortex field with a phase singularity is visualized in the middle of three holes.

3.
Nano Lett ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356044

ABSTRACT

Plasmonic nanoparticles (NPs) with chiral geometries have wide applications from chiral molecular sensing to enantioselective catalysis. The synthesis of chiral plasmonic nanoparticles using circularly polarized light (CPL) has attracted a considerable amount of attention because it eliminates the need for chiral molecules. However, NPs need to be immobilized on a solid substrate during synthesis. Here, we successfully synthesized colloidal chiral plasmonic NPs by depositing silver on the surface of achiral gold nanoparticles dispersed in a solution using CPL. Circular dichroism (CD) signals corresponding to the handedness of the irradiated CPL were observed when gold nanorods or gold nanotriangles were used. In contrast, no clear CD signal was observed when gold nanospheres were used. The morphological anisotropy of the gold nanoparticles was a key factor in the synthesis of chiral plasmonic nanoparticles using CPL. Furthermore, we demonstrated the tuning of chiroptical properties according to the CPL wavelength.

4.
Nano Lett ; 24(8): 2611-2618, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357869

ABSTRACT

Circularly polarized light (CPL) is a versatile tool to prepare chiral nanostructures, but the mechanism for inducing enantioselectivity is not well understood. This work shows that the energy and polarization of visible photons can initiate photodeposition at different sites on plasmonic nanocrystals. Here, CPL on achiral gold bipyramids (AuBPs) creates hot holes that oxidatively deposit PbO2 asymmetrically. We show for the first time that the location of PbO2 photodeposition and hence optical dissymmetry depends on the CPL wavelength. Specifically, 488 and 532 nm CPL induce PbO2 growth in the middle of AuBPs, whereas 660 nm CPL induces PbO2 growth at the tips. Our observations show that wavelength-dependent plasmonic field distributions are more important than surface lightning rod effects in localizing plasmon-mediated photochemistry. The largest optical dissymmetry occurs at excitation wavelengths between the transverse and longitudinal resonances of the AuBPs because higher-order modes are required to induce chiral electric fields.

5.
Nano Lett ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836611

ABSTRACT

Light-matter strong coupling (LMSC) is an intriguing state in which light and matter are hybridized inside a cavity. It is increasingly recognized as an excellent way to control material properties without any chemical modification. Here, we show that the LMSC is a powerful state for manipulating chiral nonlinear optical (NLO) effects through the investigation of second harmonic generation (SHG) circular dichroism. At the upper polariton band in LMSC, in addition to the enhancement of SHG by more than 1 order of magnitude, the responsivity to the handedness of circularly polarized light was largely modified, where sign inversion and increase of the dissymmetry factor were achieved. Quarter waveplate rotation analysis revealed that the LMSC clearly influenced the coefficients associated with chirality in the NLO process and also contributed to the enhancement of nonlinear magnetic dipole interactions. This study demonstrated that LMSC serves as a great platform for controlling chiral and magneto-optics.

6.
Chemistry ; 30(32): e202304275, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38575394

ABSTRACT

Optically active poly(naphthalene-1,4-diyl) was prepared through helix-sense-selective polymerization of the corresponding monomers and also through circularly polarized light (CPL) irradiation, resulting in distinctive circular dichroism (CD) spectral patterns. Chirality of the helix-sense-selective polymerization -based polymer is ascribed to preferred-handed helicity while that of the CPL-based polymer to a non-helical, chiral conformation ('biased-dihedral conformation') with preferred-handedness which was stable only in the solid state. The helix of the helix-sense-selective polymerization-based polymer gradually racemized in tetrahydrofuran while it was stabilized by aggregate formation in a hexane-dichloromethane solution. Both helix-sense-selective polymerization- and CPL-based polymers exhibited efficient circularly polarized luminescence.

7.
Chirality ; 36(3): e23654, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419414

ABSTRACT

Glycerophospholipid membranes are one of the key cellular components. Still, their species-dependent composition and homochirality remain an elusive subject. In the context of the astrophysical circularly polarized light scenario likely involved in the generation of a chiral bias in meteoritic amino and sugar acids in space, and consequently in the origin of life's homochirality on Earth, this study reports the first measurements of circular dichroism and anisotropy spectra of a selection of glycerophospholipids, their chiral backbones and their analogs. The rather low asymmetry in the interaction of UV/VUV circularly polarized light with sn-glycerol-1/3-phosphate indicates that chiral photons would have been unlikely to directly induce symmetry breaking to membrane lipids. In contrast, the anisotropy spectra of d-3-phosphoglyceric acid and d-glyceraldehyde-3-phosphate unveil up to 20 and 100 times higher maximum anisotropy factor values, respectively. This first experimental report, targeted on investigating the origins of phospholipid symmetry breaking, opens up new avenues of research to explore alternative mechanisms leading to membrane lipid homochirality, while providing important clues for the search for chiral biosignatures of extant and/or extinct life in space, in particular for the ExoMars 2028 mission.


Subject(s)
Amino Acids , Glycerophospholipids , Stereoisomerism , Ultraviolet Rays , Phosphates
8.
Nano Lett ; 23(16): 7725-7732, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37578461

ABSTRACT

The discovery of correlated phases in twisted moiré superlattices accelerated the search for low-dimensional materials with exotic properties. A promising approach uses engineered substrates to strain the material. However, designing substrates for tailored properties is hindered by the incomplete understanding of the relationship between the substrate's shapes and the electronic properties of the deposited materials. By analyzing effective models of graphene under periodic deformations with generic crystalline profiles, we identify strong C2z symmetry breaking as the critical substrate geometric feature for emerging energy gaps and quasi-flat bands. We find continuous strain profiles producing connected pseudomagnetic field landscapes are important for band topology. We show that the resultant electronic and topological properties from a substrate can be controlled with circularly polarized light, which also offers unique signatures for identifying the band topology imprinted by strain. Our results can guide experiments on strain engineering for exploring interesting transport and topological phenomena.

9.
Angew Chem Int Ed Engl ; 63(34): e202407887, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38802322

ABSTRACT

Circularly polarized light (CPL) detection is of great significance in various applications such as drug identification, sensing and imaging. Atomically precise chiral metal nanoclusters with intense circular dichroism (CD) signals are promising candidates for CPL detection, which can further facilitate device miniaturization and integration. Herein, we report the preparation of a pair of optically active chiral silver nanoclusters [Ag7(R/S-DMA)2(dpppy)3] (BF4)3 (R/S-Ag7) for direct CPL detection. The crystal structure and molecular formula of R/S-Ag7 clusters are confirmed by single-crystal X-ray diffraction and high-resolution mass spectrometry. R/S-Ag7 clusters exhibit strong CD spectra and CPL both in solution and solid states. When used as the photoactive materials in photodetectors, R/S-Ag7 enables effective discrimination between left-handed circularly polarized and right-handed circularly polarized light at 520 nm with short response time, high responsivity and considerable discrimination ratio. This study is the first report on using atomically precise chiral metal nanoclusters for CPL detection.

10.
Angew Chem Int Ed Engl ; : e202416221, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39370777

ABSTRACT

Chiral catalysts for asymmetric catalysis represent a crucial research focus in chemistry and materials science. However, a few cases about chiral-dependent photocatalysts primarily focus on plasmonic noble metals. Particularly, developing chiral nano-catalysts that can be driven by mechanical energy remains in the blank stage. Herein, organic polymer-based enantiomers, chiral polar polyimide (PI) microspheric nano-assembly are synthesized as novel bifunctional catalysts for asymmetric photocatalysis and piezocatalysis. The PI catalyst enantiomers present enantioselectivity towards left- and right-circularly polarized light, demonstrating chiral-dependent H2O2 photoproduction. Interestingly, enantioselectivity of the catalyst reverses under irradiation of different bands, presenting tunability in the interaction between chiral catalysts and circularly polarized light. For the first time, enantioselective piezocatalytic behavior is demonstrated by the chiral polar PI catalysts. They show remarkable chiral preference for asymmetric Diels-Alder reaction and enantioselective conversion of tyrosine substrates under ultrasonic vibration. The findings provide a new perspective into exploring metal-free chiral catalysts and their asymmetric catalysis applications across multiple energy forms.

11.
Angew Chem Int Ed Engl ; 63(21): e202402081, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38544406

ABSTRACT

The chiral organic-inorganic halide perovskites (OIHPs) are vital candidates for superior nonlinear optical (NLO) effects associated with circularly polarized (CP) light. NLO in chiral materials often couples with magnetic dipole (MD) transition, as well as the conventional electric dipole (ED) transition. However, the importance of MD transition in NLO process of chiral OIHPs has not yet been well recognized. Here, the circular polarized probe analysis of second harmonic generation circular dichroism (SHG-CD) provides the direct evidence that the contribution of MD leads to a large anisotropic response to CP lights in chiral OIHPs, (R-/S-MBACl)2PbI4. The thin films exhibit great sensitivity to CP lights over a wide wavelength range, and the g-value reaches up to 1.57 at the wavelength where the contribution of MD is maximized. Furthermore, it is also effective as CP light generator, outputting CP-SHG with maximum g-factor of 1.76 upon the stimulation of linearly polarized light. This study deepens the understanding of relation between chirality and magneto-optical effect, and such an efficient discrimination and generation of CP light signal is highly applicable for chirality-based sensor and optical communication devices.

12.
Angew Chem Int Ed Engl ; : e202415031, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320103

ABSTRACT

Chiral photocatalytic nanomaterials possess numerous unique properties and hold promise for various applications in chemical synthesis, environmental protection, energy conversion, and photoelectric devices. Nevertheless, it is uncommon to develop effective means to enhance the asymmetric catalytic performances of chiral plasmonic nanomaterials. In this study, a type of L/D-Au@CeO2 helical nanorods (HNRs) was fabricated by selectively growing CeO2 on the surface of Au HNRs via a facile wet-chemistry construction method. Chiral Au@CeO2 HNRs, featuring Au and CeO2 with spatially separate structures, exhibited the highest photocatalytic performance for N2 fixation, being 50.80 ± 2.64 times greater than Au HNRs. Furthermore, when L-Au@CeO2 HNRs corresponded left circularly polarized light (CPL) and D-Au@CeO2 HNRs corresponded right CPL, their photocatalytic efficiency was enhanced by 3.06 ± 0.06 times in contrast with the samples illuminated with the opposite CPL, which can be attributed to the asymmetrical generation of hot carriers upon CPL excitation. This study not only offered a simple approach to enhance the photocatalytic performance of chiral plasmonic nanomaterials but also demonstrated the potential of chiral plasmonic materials for application in specific photocatalytic reactions, such as N2 fixation.

13.
Small ; 19(33): e2302443, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37156749

ABSTRACT

Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA)2 MAPb2 I7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm-2 under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.

14.
Small ; 19(31): e2206519, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36504311

ABSTRACT

Multispectral photodetectors (MSPs) and circularly polarized light (CPL) sensors are important in opto-electronics, photonics, and imaging. A capacitive photodetector consisting of an interdigitated electrode coated with carbon dot/anthraquinone-polydiacetylene is constructed. Photoexcitation of the carbon dots induces transient electron transfer to the anthraquinone moieties, and concomitant change in the film dielectric constant and recorded capacitance. This unique photodetection mechanism furnishes wavelength selectivity that is solely determined by the absorbance of the carbon dots incorporated in the anthraquinone-polydiacetylene matrix. Accordingly, employing an array of polymerized-anthraquinone photodetector films comprising carbon dots (C-dots) exhibiting different excitation wavelengths yielded optical "capacitive fingerprints" in a broad spectral range (350-650 nm). Furthermore, circular light polarization selectivity is achieved through chiral polymerization of the polydiacetylene framework. The carbon dot/anthraquinone-polydiacetylene capacitive photodetector features rapid photo-response, high fidelity, and recyclability as the redox reactions of anthraquinone are fully reversible. The carbon dot/anthraquinone-polydiacetylene platform is inexpensive, easy to fabricate, and consists of environmentally friendly materials.

15.
Small ; 19(25): e2300642, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36932933

ABSTRACT

Bonding simple building blocks to create crystalline materials with design has been sophisticated in the molecular world, but this is still very challenging for anisotropic nanoparticles or colloids, because the particle arrangements, including position and orientation, cannot be manipulated as expected. Here biconcave polystyrene (PS) discs to present a shape self-recognition route are used, which can control both the position and orientation of particles during self-assembly by directional colloidal forces. An unusual but very challenging two-dimensional (2D) open superstructure-tetratic crystal (TC)-is achieved. The optical properties of the 2D TCs are studied by the finite difference time domain method, showing that the PS/Ag binary TC can be used to modulate the polarization state of the incident light, for example, converting the linearly polarized light into left-handed or right-handed circularly polarized light. This work paves an important way for self-assembling many unprecedented crystalline materials.

16.
Chemistry ; 29(43): e202300940, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37194414

ABSTRACT

The selective synthesis of nickel and copper complexes of 19-benzoyl-5,10,15-triphenyl-bilatrien-1-one (H2 TPBT) is reported, a molecule which crystallizes as a molecular helix of one-and-a-quarter which turns with a 5.7 Šradius and a 3.2 Špitch, and all 26 participating atoms are sp2 -hybridized. UV/vis, ECD, ESR and cyclic voltammetry experiments reveal a strong interaction between metal and ligand and partial radical character when copper is coordinated instead of nickel. Strong ECD absorption in the 800 nm range is found which, using TD-DFT calculations as well as literature spectra, is shown to be highly tunable both by metal coordination and variation of the aryl groups in the TPBT periphery. The radical character of the ligand in Cu(TPBT) enables rapid interconversion between (M)- and (P)-enantiomers, possibly via intermittent breakage of a Cu-N bond. The 19-benzoyl group kinetically stabilizes enantiopure (M/P)-Ni(TPBT). The results are interpreted with regard to the application as circularly polarized light (CPL) detectors as well as to the chirality-induced spin-selectivity (CISS) effect which is currently lacking a concise theoretical model.

17.
Chemistry ; 29(22): e202203794, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36653305

ABSTRACT

Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.

18.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35507685

ABSTRACT

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

19.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067509

ABSTRACT

Micro-sized chiral-nematic liquid crystal (N* LC) polymer particles have attracted considerable interest as versatile reflective colorants with selective circularly polarized light (CPL) properties. However, challenges in achieving the desired size distribution of N* LC particles have led to an incomplete understanding of their reflective characteristics. In this study, we successfully synthesized N* LC particles via dispersion polymerization, enabling precise control over size polydispersity by manipulating the composition of the polymerization solvent. Our investigation revealed that monodisperse N* LC particles displayed distinct reflection bands with high CPL selectivity, while polydisperse particles exhibited broader reflection with lower CPL selectivity. These findings underscore the potential to synthesize N* LC particles with tailored reflective properties using identical monomeric compounds. Furthermore, we demonstrated the production of multifunctional reflective colorants by blending N* LC particles with varying reflection colors. These discoveries hold significant promise for advancing the development of reflective colorants and anti-counterfeiting printing techniques utilizing micro-sized N* LC particles.

20.
Angew Chem Int Ed Engl ; 62(42): e202310495, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37638844

ABSTRACT

Realizing high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region is challenging and valuable for luminescent material, especially for thermally activated delay fluorescence (TADF) material. In this work, we report two achiral cyclic trinuclear Au(I) complexes, Au3 (4-Clpyrazolate)3 and Au3 (4-Brpyrazolate)3 (denoted as Cl-Au and Br-Au), obtained through the reaction of 4-chloro-1H-pyrazole and 4-bromo-1H-pyrazole with Au(I) salts, respectively. Both Cl-Au and Br-Au exhibit TADF with high PLQY (>70 %) in the NIR I (700-900 nm) (λmax = 720 nm) region, exceeding other NIR-TADF emitters in the solid state. Photophysical experiments and theoretical calculations confirmed the efficient NIR-TADF properties of Cl-Au and Br-Au were attributed to the small energy gap ΔE(S1-T2) (S = singlet, T = triplet) and the large spin-orbital coupling induced by ligand-to-metal-metal charge transfer of molecular aggregations. In addition, both complexes crystallize in the achiral Pna21 space group (mm2 point group) and are circularly polarized light (CPL) active with maxima luminescent dissymmetry factor |glum | of 3.4 × 10-3 (Cl-Au) and 2.7 × 10-3 (Br-Au) for their crystalline powder samples, respectively. By using Cl-Au as the emitting ink, 3D-printed luminescent logos are fabricated, which own anti-counterfeiting functions due to its CPL behavior dependent on the crystallinity.

SELECTION OF CITATIONS
SEARCH DETAIL