Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sensors (Basel) ; 22(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080881

ABSTRACT

Non-contact vital sign detection technology has brought a more comfortable experience to the detection process of human respiratory and heartbeat signals. Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method which can be used to decompose the echo data of frequency modulated continuous wave (FMCW) radar and extract the heartbeat and respiratory signals. The key of EEMD is to add Gaussian white noise into the signal to overcome the mode aliasing problem caused by original empirical mode decomposition (EMD). Based on the characteristics of clutter and noise distribution in public places, this paper proposed a static clutter filtering method for eliminating ambient clutter and an improved EEMD method based on stable alpha noise distribution. The symmetrical alpha stable distribution is used to replace Gaussian distribution, and the improved EEMD is used for the separation of respiratory and heartbeat signals. The experimental results show that the static clutter filtering technology can effectively filter the surrounding static clutter and highlight the periodic moving targets. Within the detection range of 0.5 m~2.5 m, the improved EEMD method can better distinguish the heartbeat, respiration, and their harmonics, and accurately estimate the heart rate.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Humans , Radar , Signal-To-Noise Ratio , Vital Signs
2.
Ultrasonics ; 142: 107379, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981172

ABSTRACT

Accurate and real-time separation of blood signal from clutter and noise signals is a critical step in clinical non-contrast ultrasound microvascular imaging. Despite the widespread adoption of singular value decomposition (SVD) and robust principal component analysis (RPCA) for clutter filtering and noise suppression, the SVD's sensitivity to threshold selection, along with the RPCA's limitations in undersampling conditions and heavy computational burden often result in suboptimal performance in complex clinical applications. To address those challenges, this study presents a novel low-rank prior-based fast RPCA (LP-fRPCA) approach to enhance the adaptability and robustness of clutter filtering and noise suppression with reduced computational cost. A low-rank prior constraint is integrated into the non-convex RPCA model to achieve a robust and efficient approximation of clutter subspace, while an accelerated alternating projection iterative algorithm is developed to improve convergence speed and computational efficiency. The performance of the LP-fRPCA method was evaluated against SVD with a tissue/blood threshold (SVD1), SVD with both tissue/blood and blood/noise thresholds (SVD2), and the classical RPCA based on the alternating direction method of multipliers algorithm through phantom and in vivo non-contrast experiments on rabbit kidneys. In the slow flow phantom experiment of 0.2 mm/s, LP-fRPCA achieved an average increase in contrast ratio (CR) of 10.68 dB, 9.37 dB, and 8.66 dB compared to SVD1, SVD2, and RPCA, respectively. In the in vivo rabbit kidney experiment, the power Doppler results demonstrate that the LP-fRPCA method achieved a superior balance in the trade-off between insufficient clutter filtering and excessive suppression of blood flow. Additionally, LP-fRPCA significantly reduced the runtime of RPCA by up to 94-fold. Consequently, the LP-fRPCA method promises to be a potential tool for clinical non-contrast ultrasound microvascular imaging.


Subject(s)
Algorithms , Microvessels , Ultrasonography , Animals , Rabbits , Ultrasonography/methods , Microvessels/diagnostic imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Principal Component Analysis , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Kidney/blood supply
3.
Artif Intell Med ; 144: 102664, 2023 10.
Article in English | MEDLINE | ID: mdl-37783552

ABSTRACT

Accurate measurement of blood flow velocity is important for the prevention and early diagnosis of atherosclerosis. However, due to the uncertainty of parameter settings, the autocorrelation velocimetry methods based on clutter filtering are prone to incorrectly filter out the near-wall blood flow signal, resulting in poor velocimetric accuracy. In addition, the Doppler coherent compounding acts as a low-pass filter, which also leads to low values of blood flow velocity estimated by the above methods. Motivated by this status quo, here we propose a deep learning estimator that combines clutter filtering and blood flow velocimetry based on the adaptive property of one-dimensional convolutional neural network (1DCNN). The estimator is operated by first extracting the blood flow signal from the original Doppler echo signal through an affine transformation of the 1D convolution, and then converting the extracted signal into the desired blood flow velocity using a linear transformation function. The effectiveness of the proposed method is verified by simulation as well as in vivo carotid artery data. Compared with typical velocimetry methods such as high-pass filtering (HPF) and singular value decomposition (SVD), the results show that the normalized root means square error (NRMSE) obtained by 1DCNN is reduced by 54.99 % and 53.50 % for forward blood flow velocimetry, and 70.99 % and 69.50 % for reverse blood flow velocimetry, respectively. Consistently, the in vivo measurements demonstrate that the goodness-of-fit of the proposed estimator is improved by 8.72 % and 4.74 % for five subjects. Moreover, the estimation time consumed by 1DCNN is greatly reduced, which costs only 2.91 % of the time of HPF and 12.83 % of the time of SVD. In conclusion, the proposed estimator is a better alternative to the current blood flow velocimetry, and is capable of providing more accurate diagnosis information for vascular diseases in clinical applications.


Subject(s)
Deep Learning , Humans , Ultrasonography , Carotid Arteries/diagnostic imaging , Ultrasonography, Doppler/methods , Rheology
4.
Ultrasonics ; 132: 107006, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37116399

ABSTRACT

Ultrafast ultrasound imaging enables the visualization of rapidly changing blood flow dynamics in the chambers of the heart. Singular value decomposition (SVD) filters outperform conventional high pass clutter rejection filters for ultrafast blood flow imaging of small and shallow fields of view (e.g., functional imaging of brain activity). However, implementing SVD filters can be challenging in cardiac imaging due to the complex spatially and temporally varying tissue characteristics. To address this challenge, we describe a method that involves excluding the proximal portion of the image (near the chest wall) and divides the reduced field of view into overlapped segments, within which tissue signals are expected to be spatially and temporally coherent. SVD filtering with automatic selection of cut-off singular vector orders to remove tissue and noise signals is implemented for each segment. Auto-thresholding is based on the coherence of spatial singular vectors, delineating tissue, blood, and noise subspaces within a spatial similarity matrix calculated for each segment. Filtered blood flow signals from the segments are reconstructed and then combined and Doppler processing is used to form a set of blood flow images. Preliminary experimental results suggest that the spatially segmented approach improves the separation of the tissue and blood subsets in the spatial similarity matrix so that automatic thresholding is significantly improved, and tissue clutter can then be rejected more effectively in cardiac ultrafast imaging, compared to using the full field of view. In the case studied, spatially segmented SVD improved the rate of correct automatic selection of thresholds from 78% to 98.7% for the investigated cases and improved the post-filter power of blood signals by an average of more than 10 dB during a cardiac cycle.


Subject(s)
Signal Processing, Computer-Assisted , Ultrasonography, Doppler , Blood Flow Velocity/physiology , Ultrasonography, Doppler/methods , Ultrasonography/methods , Heart/diagnostic imaging , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
5.
J Cereb Blood Flow Metab ; 43(9): 1557-1570, 2023 09.
Article in English | MEDLINE | ID: mdl-37070356

ABSTRACT

Quantification of vascularization volume can provide valuable information for diagnosis and prognosis in vascular pathologies. It can be adapted to inform the surgical management of gliomas, aggressive brain tumors characterized by exuberant sprouting of new blood vessels (neoangiogenesis). Filtered ultrafast Doppler data can provide two main parameters: vascularization index (VI) and fractional moving blood volume (FMBV) that clinically reflect tumor micro vascularization. Current protocols lack robust, automatic, and repeatable filtering methods. We present a filtrating method called Multi-layered Adaptive Neoangiogenesis Intra-Operative Quantification (MANIOQ). First, an adaptive clutter filtering is implemented, based on singular value decomposition (SVD) and hierarchical clustering. Second a method for noise equalization is applied, based on the subtraction of a weighted noise profile. Finally, an in vivo analysis of the periphery of the B-mode hyper signal area allows to measure the vascular infiltration extent of the brain tumors. Ninety ultrasound acquisitions were processed from 23 patients. Compared to reference methods in the literature, MANIOQ provides a more robust tissue filtering, and noise equalization allows for the first time to keep axial and lateral gain compensation (TGC and LGC). MANIOQ opens the way to an intra-operative clinical analysis of gliomas micro vascularization.


Subject(s)
Brain Neoplasms , Ultrasonography, Doppler , Humans , Blood Flow Velocity/physiology , Phantoms, Imaging , Ultrasonography, Doppler/methods , Ultrasonography , Neovascularization, Pathologic/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Image Processing, Computer-Assisted/methods
6.
Ultrasound Med Biol ; 49(6): 1465-1475, 2023 06.
Article in English | MEDLINE | ID: mdl-36967332

ABSTRACT

OBJECTIVE: The aim of this work was to evaluate the reliability of power Doppler ultrasound (PD-US) measurements made without contrast enhancement to monitor temporal changes in peripheral blood perfusion. METHODS: On the basis of pre-clinical rodent studies, we found that combinations of spatial registration and clutter filtering techniques applied to PD-US signals reproducibly tracked blood perfusion in skeletal muscle. Perfusion is monitored while modulating hindlimb blood flow. First, in invasive studies, PD-US measurements in deep muscle with laser speckle contrast imaging (LSCI) of superficial tissues made before, during and after short-term arterial clamping were compared. Then, in non-invasive studies, a pressure cuff was employed to generate longer-duration hindlimb ischemia. Here, B-mode imaging was also applied to measure flow-mediated dilation of the femoral artery while, simultaneously, PD-US was used to monitor downstream muscle perfusion to quantify reactive hyperemia. Measurements in adult male and female mice and rats, some with exercise conditioning, were included to explore biological variables. RESULTS: PD-US methods are validated through comparisons with LSCI measurements. As expected, no significant differences were found between sexes or fitness levels in flow-mediated dilation or reactive hyperemia estimates, although post-ischemic perfusion was enhanced with exercise conditioning, suggesting there could be differences between the hyperemic responses of conduit and resistive vessels. CONCLUSION: Overall, we found non-contrast PD-US imaging can reliably monitor relative spatiotemporal changes in muscle perfusion. This study supports the development of PD-US methods for monitoring perfusion changes in patients at risk for peripheral artery disease.


Subject(s)
Hyperemia , Male , Female , Rats , Mice , Animals , Rodentia , Reproducibility of Results , Blood Flow Velocity , Muscle, Skeletal , Ischemia/diagnostic imaging , Ultrasonography, Doppler , Femoral Artery/diagnostic imaging , Dilatation, Pathologic , Perfusion , Regional Blood Flow
7.
Article in English | MEDLINE | ID: mdl-36712828

ABSTRACT

Conventional color flow processing is associated with a high degree of operator dependence, often requiring the careful tuning of clutter filters and priority encoding to optimize the display and accuracy of color flow images. In a companion paper, we introduced a novel framework to adapt color flow processing based on local measurements of backscatter spatial coherence. Through simulation studies, the adaptive selection of clutter filters using coherence image quality characterization was demonstrated as a means to dynamically suppress weakly-coherent clutter while preserving coherent flow signal in order to reduce velocity estimation bias. In this study, we extend previous work to evaluate the application of coherence-adaptive clutter filtering (CACF) on experimental data acquired from both phantom and in vivo liver and fetal vessels. In phantom experiments with clutter-generating tissue, CACF was shown to increase the dynamic range of velocity estimates and decrease bias and artifact from flash and thermal noise relative to conventional color flow processing. Under in vivo conditions, such properties allowed for the direct visualization of vessels that would have otherwise required fine-tuning of filter cutoff and priority thresholds with conventional processing. These advantages are presented alongside various failure modes identified in CACF as well as discussions of solutions to mitigate such limitations.

8.
Article in English | MEDLINE | ID: mdl-36712829

ABSTRACT

The appropriate selection of a clutter filter is critical for ensuring the accuracy of velocity estimates in ultrasound color flow imaging. Given the complex spatio-temporal dynamics of flow signal and clutter, however, the manual selection of filters can be a significant challenge, increasing the risk for bias and variance introduced by the removal of flow signal and/or poor clutter suppression. We propose a novel framework to adaptively select clutter filter settings based on color flow image quality feedback derived from the spatial coherence of ultrasonic backscatter. This framework seeks to relax assumptions of clutter magnitude and velocity that are traditionally required in existing adaptive filtering methods to generalize clutter filtering to a wider range of clinically-relevant color flow imaging conditions. In this study, the relationship between color flow velocity estimation error and the spatial coherence of clutter filtered channel signals was investigated in Field II simulations for a wide range of flow and clutter conditions. This relationship was leveraged in a basic implementation of coherence-adaptive clutter filtering (CACF) designed to dynamically adapt clutter filters at each imaging pixel and frame based on local measurements of spatial coherence. In simulation studies with known scatterer and clutter motion, CACF was demonstrated to reduce velocity estimation bias while maintaining variance on par with conventional filtering.

SELECTION OF CITATIONS
SEARCH DETAIL