Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.301
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(2): e2311700120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38175863

ABSTRACT

The ionizable-lipid component of RNA-containing nanoparticles controls the pH-dependent behavior necessary for an efficient delivery of the cargo-the so-called endosomal escape. However, it is still an empirical exercise to identify optimally performing lipids. Here, we study two well-known ionizable lipids, DLin-MC3-DMA and DLin-DMA using a combination of experiments, multiscale computer simulations, and electrostatic theory. All-atom molecular dynamics simulations, and experimentally measured polar headgroup pKa values, are used to develop a coarse-grained representation of the lipids, which enables the investigation of the pH-dependent behavior of lipid nanoparticles (LNPs) through Monte Carlo simulations, in the absence and presence of RNA molecules. Our results show that the charge state of the lipids is determined by the interplay between lipid shape and headgroup chemistry, providing an explanation for the similar pH-dependent ionization state observed for lipids with headgroup pKa values about one-pH-unit apart. The pH dependence of lipid ionization is significantly influenced by the presence of RNA, whereby charge neutrality is achieved by imparting a finite and constant charge per lipid at intermediate pH values. The simulation results are experimentally supported by measurements of α-carbon 13C-NMR chemical shifts for eGFP mRNA LNPs of both DLin-MC3-DMA and DLin-DMA at various pH conditions. Further, we evaluate the applicability of a mean-field Poisson-Boltzmann theory to capture these phenomena.


Subject(s)
Lipids , Nanoparticles , Lipids/chemistry , RNA, Messenger/genetics , RNA, Messenger/chemistry , RNA, Small Interfering/genetics , Nanoparticles/chemistry , Molecular Dynamics Simulation , Hydrogen-Ion Concentration
2.
Semin Immunol ; 56: 101534, 2021 08.
Article in English | MEDLINE | ID: mdl-34836772

ABSTRACT

Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.


Subject(s)
Drug Delivery Systems , Nanoparticles , Adaptive Immunity , Humans , Lymph Nodes , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Nanotechnology
3.
Nano Lett ; 24(18): 5481-5489, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38639407

ABSTRACT

Natural killer (NK) cells have become a powerful candidate for adoptive tumor immunotherapy, while their therapeutic efficacy in solid tumors remains unsatisfactory. Here, we developed a hybrid module with an injectable hydrogel and hydroxyapatite (HAp) nanobelts for the controlled delivery of NK cells to enhance the therapy of solid tumors. Surface-functionalized HAp nanobelts modified with agonistic antibodies against NKG2D and 4-1BB and cytokines IL-2 and IL-21 support survival and dynamic activation. Thus, the HAp-modified chitosan (CS) thermos-sensitive hydrogel not only improved the retention of NK cells for more than 20 days in vivo but also increased NK cell function by more than one-fold. The unique architecture of this biomaterial complex protects NK cells from the hostile tumor environment and improves antitumor efficacy. The generation of a transient inflammatory niche for NK cells through a biocompatible hydrogel reservoir may be a conversion pathway to prevent cancer recurrence of resectable tumors.


Subject(s)
Hydrogels , Killer Cells, Natural , Killer Cells, Natural/immunology , Animals , Mice , Hydrogels/chemistry , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Durapatite/chemistry , Cell Line, Tumor , Chitosan/chemistry , NK Cell Lectin-Like Receptor Subfamily K , Interleukins/immunology , Interleukin-2/immunology
4.
BMC Plant Biol ; 24(1): 621, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951829

ABSTRACT

Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.


Subject(s)
Carbon , Fertilizers , Nitrogen , Oryza , Oryza/metabolism , Oryza/growth & development , Nitrogen/metabolism , Carbon/metabolism , Edible Grain/metabolism , Edible Grain/growth & development , Delayed-Action Preparations
5.
Small ; 20(9): e2306944, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37852939

ABSTRACT

Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.


Subject(s)
Intelligence , Precision Medicine , Humans , Delayed-Action Preparations , Drug Liberation
6.
Small ; : e2401503, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705860

ABSTRACT

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.

7.
Small ; : e2403835, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984921

ABSTRACT

Bone regeneration is a well-orchestrated process synergistically involving inflammation, angiogenesis, and osteogenesis. Therefore, an effective bone graft should be designed to target multiple molecular events and biological demands during the bone healing process. In this study, a biodegradable gelatin methacryloyl (GelMA)-based Janus microsphere delivery system containing calcium phosphate oligomer (CPO) and bone morphogenetic protein-2 (BMP-2) is developed based on natural biological events. The exceptional adjustability of GelMA facilitates the controlled release and on-demand application of biomolecules, and optimized delivery profiles of CPO and BMP-2 are explored. The sustained release of CPO during the initial healing stages contributes to early immunomodulation and promotes mineralization in the late stage. Meanwhile, the administration of BMP-2 at a relatively high concentration within the therapeutic range enhances the osteoinductive property. This delivery system, with fine-tuned release patterns, induces M2 macrophage polarization and creates a conducive immuno-microenvironment, which in turn facilitates effective bone regeneration in vivo. Collectively, this study proposes a bottom-up concept, aiming to develop a user-friendly and easily controlled delivery system targeting individual biological events, which may offer a new perspective on developing function-optimized biomaterials for clinical use.

8.
Small ; 20(27): e2310743, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38263812

ABSTRACT

Chronic wounds have emerged as an increasingly critical clinical challenge over the past few decades, due to their increasing incidence and socioeconomic burdens. Platelet-derived growth factor (PDGF) plays a pivotal role in regulating processes such as fibroblast migration, proliferation, and vascular formation during the wound healing process. The delivery of PDGF offers great potential for expediting the healing of chronic wounds. However, the clinical effectiveness of PDGF in chronic wound healing is significantly hampered by its inability to maintain a stable concentration at the wound site over an extended period. In this study, a controlled PDGF delivery system based on nanocapsules is proposed. In this system, PDGF is encapsulated within a degradable polymer shell. The release rate of PDGF from these nanocapsules can be precisely adjusted by controlling the ratios of two crosslinkers with different degradation rates within the shells. As demonstrated in a diabetic wound model, improved therapeutic outcomes with PDGF nanocapsules (nPDGF) treatment are observed. This research introduces a novel PDGF delivery platform that holds promise for enhancing the effectiveness of chronic wound healing.


Subject(s)
Delayed-Action Preparations , Nanocapsules , Platelet-Derived Growth Factor , Wound Healing , Wound Healing/drug effects , Nanocapsules/chemistry , Platelet-Derived Growth Factor/administration & dosage , Platelet-Derived Growth Factor/pharmacology , Platelet-Derived Growth Factor/metabolism , Animals , Delayed-Action Preparations/chemistry , Humans , Mice
9.
Chembiochem ; 25(7): e202300742, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38426686

ABSTRACT

Pesticides are essential in agricultural development. Controlled-release pesticides have attracted great attentions. Base on a principle of spatiotemporal selectivity, we extended the photoremovable protective group (PRPG) into agrochemical agents to achieve controllable release of active ingredients. Herein, we obtained NP-TBZ by covalently linking o-nitrobenzyl (NP) with thiabendazole (TBZ). Compound NP-TBZ can be controlled to release TBZ in dependent to light. The irradiated and unirradiated NP-TBZ showed significant differences on fungicidal activities both in vitro and in vivo. In addition, the irradiated NP-TBZ displayed similar antifungal activities to the directly-used TBZ, indicating a factual applicability in controllable release of TBZ. Furthermore, we explored the action mode and microcosmic variations by SEM analysis, and demonstrated that the irradiated NP-TBZ retained a same action mode with TBZ against mycelia growth.


Subject(s)
Pesticides , Thiabendazole , Thiabendazole/pharmacology , Thiabendazole/analysis , Delayed-Action Preparations , Antifungal Agents/pharmacology
10.
Chemistry ; : e202401589, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872250

ABSTRACT

Chemotherapy is one of the most employed strategies in clinical treatment of cancer. However, reducing medication adverse effects and improving the biological activity remains a significant issue for chemotherapy. We developed a pH and Ca2+-responsive pillar[5]arene-based supramolecular nanodrug delivery system (NDDS) WP5⊃EV@DOX to address the aforementioned challenges. The formation of this NDDS began with the spontaneous formation of supramolecular nanodrug carrier WP5⊃EV in water from PEG-modified pillar[5]arene and the bipyridilium salt derivative EV through simple host-guest interaction. Then the antitumor drug doxorubicin DOX was efficiently loaded with a high encapsulation rate of 84.6 %. Cytotoxicity results indicated that the constructed nanoplatform not only reduced DOX toxicity and side effects on normal cell (293T), but also significantly enhanced the antitumor activity on cancer cell (HepG2). Moreover, in vivo experiments showed that WP5⊃EV@DOX had a longer half-life and higher bioavailability in the blood of mice compared to the nake drug DOX, with increases to 212 % and 179 %, respectively. Therefore, WP5⊃EV@DOX has great potential in tumor therapy and provides a new idea for host-guest drug delivery system.

11.
Biopolymers ; 115(3): e23573, 2024 May.
Article in English | MEDLINE | ID: mdl-38506560

ABSTRACT

Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.


Subject(s)
Drug Delivery Systems , Hydrogels , Mouth , Needles , Hydrogels/chemistry , Humans , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Animals , Microinjections/instrumentation , Microinjections/methods
12.
Mol Pharm ; 21(7): 3173-3185, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38798088

ABSTRACT

This study aimed to investigate the effect of in vivo pH-responsive doxorubicin (DOX) release and the targetability of pilot molecules in folic acid (FA)-modified micelles using a pharmacokinetic-pharmacodynamic (PK-PD) model. The time profiles of intratumoral DOX concentrations in Walker256 tumor-bearing rats were monitored using a microdialysis probe, followed by compartmental analysis, to evaluate intratumoral tissue pharmacokinetics. Maximal DOX was released from micelles 350 min after the administration of pH-responsive DOX-releasing micelles. However, FA modification of the micelles shortened the time to peak drug concentration to 150 min. Additionally, FA modification resulted in a 27-fold increase in the tumor inflow rate constant. Walker256 tumor-bearing rats were subsequently treated with DOX, pH-responsive DOX-releasing micelles, and pH-responsive DOX-releasing FA-modified micelles to monitor the tumor growth-time profiles. An intratumoral threshold concentration of DOX (55-64 ng/g tumor) was introduced into the drug efficacy compartment to construct a PD model, followed by PK-PD analysis of the tumor growth-time profiles. Similar results of threshold concentration and drug potency of DOX were obtained across all three formulations. Cell proliferation was delayed as the drug delivery ability of DOX was improved. The PK model, which was developed using the microdialysis method, revealed the intratumoral pH-responsive DOX distribution profiles. This facilitated the estimation of intratumoral PK parameters. The PD model with threshold concentrations contributed to the estimation of PD parameters in the three formulations, with consistent mechanisms observed. We believe that our PK-PD model can objectively assess the contributions of pH-responsive release ability and pilot molecule targetability to pharmacological effects.


Subject(s)
Doxorubicin , Folic Acid , Micelles , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Animals , Rats , Hydrogen-Ion Concentration , Folic Acid/chemistry , Folic Acid/pharmacokinetics , Drug Liberation , Cell Proliferation/drug effects , Drug Delivery Systems/methods , Cell Line, Tumor , Drug Carriers/chemistry , Female , Rats, Wistar , Humans , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology
13.
Arch Microbiol ; 206(4): 199, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563993

ABSTRACT

Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.


Subject(s)
Drug Carriers , Nanostructures , Humans , Drug Delivery Systems , Wound Healing , Inflammation
14.
Environ Sci Technol ; 58(22): 9591-9600, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38759639

ABSTRACT

Methane is a major contributor to anthropogenic greenhouse gas emissions. Identifying large sources of methane, particularly from the oil and gas sectors, will be essential for mitigating climate change. Aircraft-based methane sensing platforms can rapidly detect and quantify methane point-source emissions across large geographic regions, and play an increasingly important role in industrial methane management and greenhouse gas inventory. We independently evaluate the performance of five major methane-sensing aircraft platforms: Carbon Mapper, GHGSat-AV, Insight M, MethaneAIR, and Scientific Aviation. Over a 6 week period, we released metered gas for over 700 single-blind measurements across all five platforms to evaluate their ability to detect and quantify emissions that range from 1 to over 1,500 kg(CH4)/h. Aircraft consistently quantified releases above 10 kg(CH4)/h, and GHGSat-AV and Insight M detected emissions below 5 kg(CH4)/h. Fully blinded quantification estimates for platforms using downward-facing imaging spectrometers have parity slopes ranging from 0.76 to 1.13, with R2 values of 0.61 to 0.93; the platform using continuous air sampling has a parity slope of 0.5 (R2 = 0.93). Results demonstrate that aircraft-based methane sensing has matured since previous studies and is ready for an increasingly important role in environmental policy and regulation.


Subject(s)
Aircraft , Greenhouse Gases , Methane , Methane/analysis , Greenhouse Gases/analysis , Environmental Monitoring/methods , Climate Change , Air Pollutants/analysis
15.
Mol Biol Rep ; 51(1): 355, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400844

ABSTRACT

Nanoparticle-based delivery systems have emerged as powerful tools in the field of pest management, offering precise and effective means of delivering double-stranded RNA (dsRNA), a potent agent for pest control through RNA interference (RNAi). This comprehensive review aims to evaluate and compare various types of nanoparticles for their suitability in dsRNA delivery for pest management applications. The review begins by examining the unique properties and advantages of different nanoparticle materials, including clay, chitosan, liposomes, carbon, gold and silica. Each material's ability to protect dsRNA from degradation and its potential for targeted delivery to pests are assessed. Furthermore, this review delves into the surface modification strategies employed to enhance dsRNA delivery efficiency. Functionalization with oligonucleotides, lipids, polymers, proteins and peptides is discussed in detail, highlighting their role in improving stability, cellular uptake, and specificity of dsRNA delivery.This review also provides valuable guidance on choosing the most suitable nanoparticle-based system for delivering dsRNA effectively and sustainably in pest management. Moreover, it identifies existing knowledge gaps and proposes potential research directions aimed at enhancing pest control strategies through the utilization of nanoparticles and dsRNA.


Subject(s)
Nanoparticles , RNA, Double-Stranded , Animals , Insecta/genetics , RNA Interference , Liposomes/metabolism , Pest Control
16.
Macromol Rapid Commun ; : e2400359, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897179

ABSTRACT

Understanding the transport of nanoparticles from and within hydrogels is a key issue for the design of nanocomposite hydrogels for drug delivery systems and tissue engineering. To investigate the translocation of nanocarriers from and within hydrogel networks triggered by changes of temperature, ultrasmall (8 nm) and small (80 nm) silica nanocapsules are embedded in temperature-responsive hydrogels and non-responsive hydrogels. The ultrasmall silica nanocapsules are released from temperature-responsive hydrogels to water or transported to other hydrogels upon direct activation by heating or indirect activation by Joule heating; while, they are not released from non-responsive hydrogel. Programmable transport of nanocarriers from and in hydrogels provides insights for the development of complex biomedical devices and soft robotics.

17.
Macromol Rapid Commun ; 45(12): e2400097, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499007

ABSTRACT

Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.


Subject(s)
Acetals , Benzaldehydes , Acetals/chemistry , Benzaldehydes/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Polymers/chemistry , Polymers/chemical synthesis , Polyethylene Glycols/chemistry , Humans , Molecular Structure , Drug Carriers/chemistry , Drug Carriers/chemical synthesis
18.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38925655

ABSTRACT

AIMS: In this study, the antifungal efficacy and phytotoxicity of silica coated porous zinc oxide nanoparticle (SZNP) were analyzed as this nanocomposite was observed to be a suitable platform for slow release fungicides and has the promise to bring down the dosage of other agrochemicals as well. METHODS AND RESULTS: Loading and release kinetics of tricyclazole, a potent fungicide, were analyzed by measuring surface area (SBET) using Brunauer-Emmett-Teller (BET) isotherm and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. The antifungal efficacy of ZnO nanoparticle (ZNP) and SZNP was investigated on two phytopathogenic fungi (Alternaria solani and Aspergillus niger). The morphological changes to the fungal structure due to ZNP and SZNP treatment were studied by field emission-scanning electron microscopy. Nanoparticle mediated elevation of reactive oxygen species (ROS) in fungal samples was detected by analyzing the levels of superoxide dismutase, catalase, thiol content, lipid peroxidation, and by 2,7-dichlorofluorescin diacetate assay. The phytotoxicity of these two nanostructures was assessed in rice plants by measuring primary plant growth parameters. Further, the translocation of the nanocomposite in the same plant model system was examined by checking the presence of fluorescein isothiocyanate tagged SZNP within the plant tissue. CONCLUSIONS: ZNP had superior antifungal efficacy than SZNP and caused the generation of more ROS in the fungal samples. Even then, SZNP was preferred as an agrochemical delivery vehicle because, unlike ZNP alone, it was not toxic to plant system. Moreover, as silica in nanoform is entomotoxic in nature and nano ZnO has antifungal property, both the cargo (agrochemical) and the carrier system (silica coated porous nano zinc oxide) will have a synergistic effect in crop protection.


Subject(s)
Antifungal Agents , Nanocomposites , Silicon Dioxide , Zinc Oxide , Zinc Oxide/pharmacology , Nanocomposites/toxicity , Silicon Dioxide/pharmacology , Silicon Dioxide/chemistry , Antifungal Agents/pharmacology , Agrochemicals/pharmacology , Aspergillus niger/drug effects , Aspergillus niger/growth & development , Oryza/microbiology , Oryza/growth & development , Oryza/drug effects , Fungicides, Industrial/pharmacology , Porosity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Delayed-Action Preparations , Reactive Oxygen Species/metabolism
19.
Bioorg Chem ; 143: 106986, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995641

ABSTRACT

Photodynamic therapy (PDT) has emerged as a highly efficacious therapeutic modality for malignant tumors owing to its non-invasive property and minimal adverse effects. However, the pervasive hypoxic microenvironment within tumors significantly compromises the efficacy of oxygen-dependent PDT, posing a formidable challenge to the advancement of high-efficiency PDT. Here, we developed a nanostructured photosensitizer (PS) assembled by cationic and anionic zinc phthalocyanines to load oxygen-throttling drug atovaquone (ATO), which was subsequently coated with polydopamine to obtain the final product ATO/ZnPc-CA@DA. ATO/ZnPc-CA@DA exhibited excellent stability, particularly in the blood milieu. Interestingly, the acidic microenvironment can trigger drug release from ATO/ZnPc-CA@DA, leading to a significant enhancement in fluorescence and an augmented generation of reactive oxygen species (ROS). ATO/ZnPc-CA@DA can induce synergistic cytotoxicity of PS and ATO, and significantly enhance the killing ability against tumor cells under hypoxic conditions. The mechanism underlying cytotoxicity of ATO/ZnPc-CA@DA was demonstrated to be associated with augmented cell apoptosis, disruption of mitochondrial membrane potential, diminished ATP production, heightened intracellular ROS generation, and reduced intracellular oxygen consumption. The animal experiments indicated that ATO/ZnPc-CA@DA possessed enhanced tumor targeting capability, along with a reduction in PS distribution within normal organs. Furthermore, ATO/ZnPc-CA@DA exhibited enhanced inhibitory effect on tumor growth and caused aggravated damage to tumor tissue. The construction strategy of nanostructured PS and the synergistic antitumor principle of combined oxygen-throttling drugs can be applied to other PSs, thereby advancing the development of photodynamic antitumor therapy and promoting the clinical translation.


Subject(s)
Nanoparticles , Organometallic Compounds , Photochemotherapy , Animals , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Delayed-Action Preparations , Cell Line, Tumor , Fluorescence , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Isoindoles , Oxygen , Organometallic Compounds/pharmacology
20.
J Nanobiotechnology ; 22(1): 1, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167129

ABSTRACT

Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.


Subject(s)
Insulin , Nanoparticles , Humans , Drug Delivery Systems/methods , Quality of Life , Polymers , Administration, Oral , Drug Carriers
SELECTION OF CITATIONS
SEARCH DETAIL