Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 534
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37080200

ABSTRACT

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Subject(s)
Proteome , Proteomics , Proteomics/methods , Proteome/metabolism , Genomics/methods , Genome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Cell ; 183(7): 1785-1800.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33333025

ABSTRACT

All proteins interact with other cellular components to fulfill their function. While tremendous progress has been made in the identification of protein complexes, their assembly and dynamics remain difficult to characterize. Here, we present a high-throughput strategy to analyze the native assembly kinetics of protein complexes. We apply our approach to characterize the co-assembly for 320 pairs of nucleoporins (NUPs) constituting the ≈50 MDa nuclear pore complex (NPC) in yeast. Some NUPs co-assemble fast via rapid exchange whereas others require lengthy maturation steps. This reveals a hierarchical principle of NPC biogenesis where individual subcomplexes form on a minute timescale and then co-assemble from center to periphery in a ∼1 h-long maturation process. Intriguingly, the NUP Mlp1 stands out as joining very late and associating preferentially with aged NPCs. Our approach is readily applicable beyond the NPC, making it possible to analyze the intracellular dynamics of a variety of multiprotein assemblies.


Subject(s)
Macromolecular Substances/metabolism , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae/metabolism , Staining and Labeling , Biological Assay , Kinetics , Models, Biological , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Time Factors
3.
Proc Natl Acad Sci U S A ; 121(32): e2409676121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074273

ABSTRACT

Fragment correlation mass spectrometry correlates ion pairs generated from the same fragmentation pathway, achieved by covariance mapping of tandem mass spectra generated with an unmodified linear ion trap without preseparation. We enable the identification of different precursors at different charge states in a complex mixture from a large isolation window, empowering an analytical approach for data-independent acquisition. The method resolves and matches isobaric fragments, internal ions, and disulfide bond fragments. We suggest that this method represents a major advance for analyzing structures of biopolymers in mixtures.

4.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38324622

ABSTRACT

Liquid chromatography coupled with high-resolution mass spectrometry data-independent acquisition (LC-HRMS/DIA), including MSE, enable comprehensive metabolomics analyses though they pose challenges for data processing with automatic annotation and molecular networking (MN) implementation. This motivated the present proposal, in which we introduce DIA-IntOpenStream, a new integrated workflow combining open-source software to streamline MSE data handling. It provides 'in-house' custom database construction, allows the conversion of raw MSE data to a universal format (.mzML) and leverages open software (MZmine 3 and MS-DIAL) all advantages for confident annotation and effective MN data interpretation. This pipeline significantly enhances the accessibility, reliability and reproducibility of complex MSE/DIA studies, overcoming previous limitations of proprietary software and non-universal MS data formats that restricted integrative analysis. We demonstrate the utility of DIA-IntOpenStream with two independent datasets: dataset 1 consists of new data from 60 plant extracts from the Ocotea genus; dataset 2 is a publicly available actinobacterial extract spiked with authentic standard for detailed comparative analysis with existing methods. This user-friendly pipeline enables broader adoption of cutting-edge MS tools and provides value to the scientific community. Overall, it holds promise for speeding up metabolite discoveries toward a more collaborative and open environment for research.


Subject(s)
Metabolomics , Software , Reproducibility of Results , Workflow , Metabolomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods
5.
Mol Cell Proteomics ; 23(1): 100687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029961

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, partly because it is frequently identified at an advanced stage, when surgery is no longer feasible. Therefore, early detection using minimally invasive methods such as blood tests may improve outcomes. However, studies to discover molecular signatures for the early detection of PDAC using blood tests have only been marginally successful. In the current study, a quantitative glycoproteomic approach via data-independent acquisition mass spectrometry was utilized to detect glycoproteins in 29 patient-matched PDAC tissues and sera. A total of 892 N-linked glycopeptides originating from 141 glycoproteins had PDAC-associated changes beyond normal variation. We further evaluated the specificity of these serum-detectable glycoproteins by comparing their abundance in 53 independent PDAC patient sera and 65 cancer-free controls. The PDAC tissue-associated glycoproteins we have identified represent an inventory of serum-detectable PDAC-associated glycoproteins as candidate biomarkers that can be potentially used for the detection of PDAC using blood tests.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Biomarkers, Tumor/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Glycoproteins , Mass Spectrometry
6.
Mol Cell Proteomics ; 23(2): 100713, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184013

ABSTRACT

Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.


Subject(s)
Proteome , Tandem Mass Spectrometry , Humans , Proteome/metabolism , Tandem Mass Spectrometry/methods , Peptides/analysis , HeLa Cells , Proteomics/methods
7.
Mol Cell Proteomics ; 23(7): 100792, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810695

ABSTRACT

Immune cells that infiltrate the tumor microenvironment (TME) play crucial roles in shaping cancer development and influencing clinical outcomes and therapeutic responses. However, obtaining a comprehensive proteomic snapshot of tumor-infiltrating immunity in clinical specimens is often hindered by small sample amounts and a low proportion of immune infiltrating cells in the TME. To enable in-depth and highly sensitive profiling of microscale tissues, we established an immune cell-enriched library-assisted strategy for data-independent acquisition mass spectrometry (DIA-MS). Firstly, six immune cell subtype-specific spectral libraries were established from sorted cluster of differentiation markers, CD8+, CD4+ T lymphocytes, B lymphocytes, natural killer cells, dendritic cells, and macrophages in murine mesenteric lymph nodes (MLNs), covering 7815 protein groups with surface markers and immune cell-enriched proteins. The feasibility of microscale immune proteomic profiling was demonstrated on 1 µg tissue protein from the tumor of murine colorectal cancer (CRC) models using single-shot DIA; the immune cell-enriched library increased coverage to quantify 7419 proteins compared to directDIA analysis (6978 proteins). The enhancement enabled the mapping of 841 immune function-related proteins and exclusive identification of many low-abundance immune proteins, such as CD1D1, and CD244, demonstrating high sensitivity for immune landscape profiling. This approach was used to characterize the MLNs in CRC models, aiming to elucidate the mechanism underlying their involvement in cancer development within the TME. Even with a low percentage of immune cell infiltration (0.25-3%) in the tumor, our results illuminate downregulation in the adaptive immune signaling pathways (such as C-type lectin receptor signaling, and chemokine signaling), T cell receptor signaling, and Th1/Th2/Th17 cell differentiation, suggesting an immunosuppressive status in MLNs of CRC model. The DIA approach using the immune cell-enriched libraries showcased deep coverage and high sensitivity that can facilitate illumination of the immune proteomic landscape for microscale samples.


Subject(s)
Proteomics , Tumor Microenvironment , Animals , Proteomics/methods , Mice , Mass Spectrometry/methods , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Mice, Inbred C57BL , Proteome/metabolism , Lymph Nodes/metabolism , Humans
8.
Mol Cell Proteomics ; 23(7): 100794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839039

ABSTRACT

Reversible cerebral vasoconstriction syndrome (RCVS) is a complex neurovascular disorder characterized by repetitive thunderclap headaches and reversible cerebral vasoconstriction. The pathophysiological mechanism of this mysterious syndrome remains underexplored and there is no clinically available molecular biomarker. To provide insight into the pathogenesis of RCVS, this study reported the first landscape of dysregulated proteome of cerebrospinal fluid (CSF) in patients with RCVS (n = 21) compared to the age- and sex-matched controls (n  = 20) using data-independent acquisition mass spectrometry. Protein-protein interaction and functional enrichment analysis were employed to construct functional protein networks using the RCVS proteome. An RCVS-CSF proteome library resource of 1054 proteins was established, which illuminated large groups of upregulated proteins enriched in the brain and blood-brain barrier (BBB). Personalized RCVS-CSF proteomic profiles from 17 RCVS patients and 20 controls reveal proteomic changes involving the complement system, adhesion molecules, and extracellular matrix, which may contribute to the disruption of BBB and dysregulation of neurovascular units. Moreover, an additional validation cohort validated a panel of biomarker candidates and a two-protein signature predicted by machine learning model to discriminate RCVS patients from controls with an area under the curve of 0.997. This study reveals the first RCVS proteome and a potential pathogenetic mechanism of BBB and neurovascular unit dysfunction. It also nominates potential biomarker candidates that are mechanistically plausible for RCVS, which may offer potential diagnostic and therapeutic opportunities beyond the clinical manifestations.


Subject(s)
Biomarkers , Proteome , Humans , Female , Proteome/metabolism , Male , Adult , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Vasoconstriction , Middle Aged , Headache Disorders, Primary/cerebrospinal fluid , Headache Disorders, Primary/metabolism , Proteomics/methods , Case-Control Studies , Protein Interaction Maps , Syndrome
9.
Mol Cell Proteomics ; 23(2): 100712, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182042

ABSTRACT

Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.


Subject(s)
Proteomics , Software , Proteomics/methods , Mass Spectrometry/methods , Gene Library , Proteome/analysis
10.
Mol Cell Proteomics ; 23(6): 100777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670310

ABSTRACT

Transmembrane (TM) proteins constitute over 30% of the mammalian proteome and play essential roles in mediating cell-cell communication, synaptic transmission, and plasticity in the central nervous system. Many of these proteins, especially the G protein-coupled receptors (GPCRs), are validated or candidate drug targets for therapeutic development for mental diseases, yet their expression profiles are underrepresented in most global proteomic studies. Herein, we establish a brain TM protein-enriched spectral library based on 136 data-dependent acquisition runs acquired from various brain regions of both naïve mice and mental disease models. This spectral library comprises 3043 TM proteins including 171 GPCRs, 231 ion channels, and 598 transporters. Leveraging this library, we analyzed the data-independent acquisition data from different brain regions of two mouse models exhibiting depression- or anxiety-like behaviors. By integrating multiple informatics workflows and library sources, our study significantly expanded the mental stress-perturbed TM proteome landscape, from which a new GPCR regulator of depression was verified by in vivo pharmacological testing. In summary, we provide a high-quality mouse brain TM protein spectral library to largely increase the TM proteome coverage in specific brain regions, which would catalyze the discovery of new potential drug targets for the treatment of mental disorders.


Subject(s)
Brain , Disease Models, Animal , Mental Disorders , Mice, Inbred C57BL , Proteome , Proteomics , Animals , Proteome/metabolism , Brain/metabolism , Proteomics/methods , Mice , Mental Disorders/metabolism , Membrane Proteins/metabolism , Male , Receptors, G-Protein-Coupled/metabolism
11.
Mol Cell Proteomics ; 23(5): 100760, 2024 May.
Article in English | MEDLINE | ID: mdl-38579929

ABSTRACT

We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.


Subject(s)
Proteome , Proteomics , Tandem Mass Spectrometry , Humans , Proteome/analysis , Proteomics/methods , Time Factors
12.
Mol Cell Proteomics ; 23(5): 100754, 2024 May.
Article in English | MEDLINE | ID: mdl-38548019

ABSTRACT

Improving coverage, robustness, and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography-tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-bead phosphoproteomics sample preparation with a focus on low-input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores, and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample, and loading buffer volumes allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 µg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow-window data-independent acquisition (nDIA).


Subject(s)
Phosphopeptides , Phosphoproteins , Proteomics , Tandem Mass Spectrometry , Phosphopeptides/analysis , Phosphopeptides/metabolism , Proteomics/methods , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Phosphoproteins/metabolism , Phosphoproteins/analysis , HeLa Cells , Proteome/analysis , Phosphorylation , Automation
13.
Mol Cell Proteomics ; 22(2): 100489, 2023 02.
Article in English | MEDLINE | ID: mdl-36566012

ABSTRACT

Data-independent acquisition (DIA) methods have become increasingly popular in mass spectrometry-based proteomics because they enable continuous acquisition of fragment spectra for all precursors simultaneously. However, these advantages come with the challenge of correctly reconstructing the precursor-fragment relationships in these highly convoluted spectra for reliable identification and quantification. Here, we introduce a scan mode for the combination of trapped ion mobility spectrometry with parallel accumulation-serial fragmentation (PASEF) that seamlessly and continuously follows the natural shape of the ion cloud in ion mobility and peptide precursor mass dimensions. Termed synchro-PASEF, it increases the detected fragment ion current several-fold at sub-second cycle times. Consecutive quadrupole selection windows move synchronously through the mass and ion mobility range. In this process, the quadrupole slices through the peptide precursors, which separates fragment ion signals of each precursor into adjacent synchro-PASEF scans. This precisely defines precursor-fragment relationships in ion mobility and mass dimensions and effectively deconvolutes the DIA fragment space. Importantly, the partitioned parts of the fragment ion transitions provide a further dimension of specificity via a lock-and-key mechanism. This is also advantageous for quantification, where signals from interfering precursors in the DIA selection window do not affect all partitions of the fragment ion, allowing to retain only the specific parts for quantification. Overall, we establish the defining features of synchro-PASEF and explore its potential for proteomic analyses.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Proteomics/methods , Proteome/analysis , Peptides/analysis
14.
Mol Cell Proteomics ; 22(1): 100453, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470534

ABSTRACT

The eye lens is responsible for focusing and transmitting light to the retina. The lens does this in the absence of organelles, yet maintains transparency for at least 5 decades before onset of age-related nuclear cataract (ARNC). It is hypothesized that oxidative stress contributes significantly to ARNC formation. It is in addition hypothesized that transparency is maintained by a microcirculation system that delivers antioxidants to the lens nucleus and exports small molecule waste. Common data-dependent acquisition methods are hindered by dynamic range of lens protein expression and provide limited context to age-related changes in the lens. In this study, we utilized data-independent acquisition mass spectrometry to analyze the urea-insoluble membrane protein fractions of 16 human lenses subdivided into three spatially distinct lens regions to characterize age-related changes, particularly concerning the lens microcirculation system and oxidative stress response. In this pilot cohort, we measured 4788 distinct protein groups, 46,681 peptides, and 7592 deamidated sequences, more than in any previous human lens data-dependent acquisition approach. Principally, we demonstrate that a significant proteome remodeling event occurs at approximately 50 years of age, resulting in metabolic preference for anaerobic glycolysis established with organelle degradation, decreased abundance of protein networks involved in calcium-dependent cell-cell contacts while retaining networks related to oxidative stress response. Furthermore, we identified multiple antioxidant transporter proteins not previously detected in the human lens and describe their spatiotemporal and age-related abundance changes. Finally, we demonstrate that aquaporin-5, among other proteins, is modified with age by post-translational modifications including deamidation and truncation. We suggest that the continued accumulation of each of these age-related outcomes in proteome remodeling contribute to decreased fiber cell permeability and result in ARNC formation.


Subject(s)
Cataract , Lens, Crystalline , Humans , Proteome/metabolism , Lens, Crystalline/chemistry , Lens, Crystalline/metabolism , Cataract/metabolism , Antioxidants/metabolism
15.
Mol Cell Proteomics ; 22(8): 100612, 2023 08.
Article in English | MEDLINE | ID: mdl-37391045

ABSTRACT

Bacteria are the most abundant and diverse organisms among the kingdoms of life. Due to this excessive variance, finding a unified, comprehensive, and safe workflow for quantitative bacterial proteomics is challenging. In this study, we have systematically evaluated and optimized sample preparation, mass spectrometric data acquisition, and data analysis strategies in bacterial proteomics. We investigated workflow performances on six representative species with highly different physiologic properties to mimic bacterial diversity. The best sample preparation strategy was a cell lysis protocol in 100% trifluoroacetic acid followed by an in-solution digest. Peptides were separated on a 30-min linear microflow liquid chromatography gradient and analyzed in data-independent acquisition mode. Data analysis was performed with DIA-NN using a predicted spectral library. Performance was evaluated according to the number of identified proteins, quantitative precision, throughput, costs, and biological safety. With this rapid workflow, over 40% of all encoded genes were detected per bacterial species. We demonstrated the general applicability of our workflow on a set of 23 taxonomically and physiologically diverse bacterial species. We could confidently identify over 45,000 proteins in the combined dataset, of which 30,000 have not been experimentally validated before. Our work thereby provides a valuable resource for the microbial scientific community. Finally, we grew Escherichia coli and Bacillus cereus in replicates under 12 different cultivation conditions to demonstrate the high-throughput suitability of the workflow. The proteomic workflow we present in this manuscript does not require any specialized equipment or commercial software and can be easily applied by other laboratories to support and accelerate the proteomic exploration of the bacterial kingdom.


Subject(s)
Proteome , Proteomics , Proteome/analysis , Proteomics/methods , Workflow , Peptides/chemistry , Escherichia coli
16.
Mol Cell Proteomics ; 22(9): 100623, 2023 09.
Article in English | MEDLINE | ID: mdl-37481071

ABSTRACT

Data-independent acquisition (DIA) mass spectrometry-based proteomics generates reproducible proteome data. The complex processing of the DIA data has led to the development of multiple data analysis tools. In this study, we assessed the performance of five tools (OpenSWATH, EncyclopeDIA, Skyline, DIA-NN, and Spectronaut) using six DIA datasets obtained from TripleTOF, Orbitrap, and TimsTOF Pro instruments. By comparing identification and quantification metrics and examining shared and unique cross-tool identifications, we evaluated both library-based and library-free approaches. Our findings indicate that library-free approaches outperformed library-based methods when the spectral library had limited comprehensiveness. However, our results also suggest that constructing a comprehensive library still offers benefits for most DIA analyses. This study provides comprehensive guidance for DIA data analysis tools, benefiting both experienced and novice users of DIA-mass spectrometry technology.


Subject(s)
Proteome , Proteomics , Mass Spectrometry/methods , Proteomics/methods , Proteome/analysis , Gene Library , Data Analysis
17.
Mol Cell Proteomics ; 22(10): 100639, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37657519

ABSTRACT

Recent advances in methodology have made phosphopeptide analysis a tractable problem for many proteomics researchers. There are now a wide variety of robust and accessible enrichment strategies to generate phosphoproteomes while free or inexpensive software tools for quantitation and site localization have simplified phosphoproteome analysis workflow tremendously. As a research group under the Association for Biomolecular Resource Facilities umbrella, the Proteomics Standards Research Group has worked to develop a multipathway phosphopeptide standard based on a mixture of heavy-labeled phosphopeptides designed to enable researchers to rapidly develop assays. This mixture contains 131 mass spectrometry vetted phosphopeptides specifically chosen to cover as many known biologically interesting phosphosites as possible from seven different signaling networks: AMPK signaling, death and apoptosis signaling, ErbB signaling, insulin/insulin-like growth factor-1 signaling, mTOR signaling, PI3K/AKT signaling, and stress (p38/SAPK/JNK) signaling. Here, we describe a characterization of this mixture spiked into a HeLa tryptic digest stimulated with both epidermal growth factor and insulin-like growth factor-1 to activate the MAPK and PI3K/AKT/mTOR pathways. We further demonstrate a comparison of phosphoproteomic profiling of HeLa performed independently in five labs using this phosphopeptide mixture with data-independent acquisition. Despite different experimental and instrumentation processes, we found that labs could produce reproducible, harmonized datasets by reporting measurements as ratios to the standard, while intensity measurements showed lower consistency between labs even after normalization. Our results suggest that widely available, biologically relevant phosphopeptide standards can act as a quantitative "yardstick" across laboratories and sample preparations enabling experimental designs larger than a single laboratory can perform. Raw data files are publicly available in the MassIVE dataset MSV000090564.


Subject(s)
Phosphopeptides , Proto-Oncogene Proteins c-akt , Phosphorylation , Phosphopeptides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphoproteins/metabolism
18.
Mol Cell Proteomics ; 22(9): 100613, 2023 09.
Article in English | MEDLINE | ID: mdl-37394064

ABSTRACT

Prostate cancer (PCa) is the second most prevalent malignancy and the fifth cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC). We collected 78 HSPC biopsies and measured their proteomes using pressure cycling technology and a pulsed data-independent acquisition pipeline. We quantified 7355 proteins using these HSPC biopsies. A total of 251 proteins showed differential expression between patients with a long- or short-term progression to CRPC. Using a random forest model, we identified seven proteins that significantly discriminated long- from short-term progression patients, which were used to classify PCa patients with an area under the curve of 0.873. Next, one clinical feature (Gleason sum) and two proteins (BGN and MAPK11) were found to be significantly associated with rapid disease progression. A nomogram model using these three features was generated for stratifying patients into groups with significant progression differences (p-value = 1.3×10-4). To conclude, we identified proteins associated with a fast progression to CRPC and an unfavorable prognosis. Based on these proteins, our machine learning and nomogram models stratified HSPC into high- and low-risk groups and predicted their prognoses. These models may aid clinicians in predicting the progression of patients, guiding individualized clinical management and decisions.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Retrospective Studies , Prostate-Specific Antigen , Hormones
19.
Mol Cell Proteomics ; 22(12): 100658, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806340

ABSTRACT

Label-free proteomics is a fast-growing methodology to infer abundances in mass spectrometry proteomics. Extensive research has focused on spectral quantification and peptide identification. However, research toward modeling and understanding quantitative proteomics data is scarce. Here we propose a Bayesian hierarchical decision model (Baldur) to test for differences in means between conditions for proteins, peptides, and post-translational modifications. We developed a Bayesian regression model to characterize local mean-variance trends in data, to estimate measurement uncertainty and hyperparameters for the decision model. A key contribution is the development of a new gamma regression model that describes the mean-variance dependency as a mixture of a common and a latent trend-allowing for localized trend estimates. We then evaluate the performance of Baldur, limma-trend, and t test on six benchmark datasets: five total proteomics and one post-translational modification dataset. We find that Baldur drastically improves the decision in noisier post-translational modification data over limma-trend and t test. In addition, we see significant improvements using Baldur over the other methods in the total proteomics datasets. Finally, we analyzed Baldur's performance when increasing the number of replicates and found that the method always increases precision with sample size, while showing robust control of the false positive rate. We conclude that our model vastly improves over popular data analysis methods (limma-trend and t test) in several spike-in datasets by achieving a high true positive detection rate, while greatly reducing the false-positive rate.


Subject(s)
Proteins , Proteomics , Proteomics/methods , Bayes Theorem , Proteins/chemistry , Peptides/metabolism , Mass Spectrometry/methods
20.
Mol Cell Proteomics ; 22(8): 100602, 2023 08.
Article in English | MEDLINE | ID: mdl-37343696

ABSTRACT

Treatment and relevant targets for breast cancer (BC) remain limited, especially for triple-negative BC (TNBC). We identified 6091 proteins of 76 human BC cell lines using data-independent acquisition (DIA). Integrating our proteomic findings with prior multi-omics datasets, we found that including proteomics data improved drug sensitivity predictions and provided insights into the mechanisms of action. We subsequently profiled the proteomic changes in nine cell lines (five TNBC and four non-TNBC) treated with EGFR/AKT/mTOR inhibitors. In TNBC, metabolism pathways were dysregulated after EGFR/mTOR inhibitor treatment, while RNA modification and cell cycle pathways were affected by AKT inhibitor. This systematic multi-omics and in-depth analysis of the proteome of BC cells can help prioritize potential therapeutic targets and provide insights into adaptive resistance in TNBC.


Subject(s)
Signal Transduction , Triple Negative Breast Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proteomics , Cell Proliferation , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Triple Negative Breast Neoplasms/metabolism , ErbB Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL