Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Environ Monit Assess ; 195(9): 1097, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37626276

ABSTRACT

Water quality is one of the essential parameters of environmental monitoring; even a slight variation in its characteristics may significantly influence the ecosystem. The water quality of Vembanad Lake is affected by anthropogenic effects such as industrial effluents and tourism. The optical parameters representing water quality, such as diffuse attenuation (Kd), turbidity, suspended particulate matter (SPM), and chlorophyll-a (Chl-a), are considered in this study to evaluate the water quality of Vembanad Lake, Kerala, India. As this lake is regarded as of ecological importance by the Ramsar Convention and has faced severe concerns over recent years, there was a substantial change in the water quality during the lockdowns of the COVID-19 pandemic. This research is aimed at examining the change in water quality using optical data from Sentinel-2 satellites in the ACOLITE processing software from 2016 to 2021. The analyses showed a 2.5% decrease in the values of Kd, whereas SPM and turbidity show a reduction of about 4.3% from the year 2016 to 2021. The flood and the COVID lockdown had an impact on the improvement in the quality of water from 2018 to 2021. The findings indicated that the reduction in industrial activities and tourism had a more significant effect on the improvement in the water quality of the lake. There was no substantial change in the Chl-a until 2020, whereas an average decrease of 12% in Chl-a values was observed throughout 2021. This decrease can be attributed to the reduction in the lake's hydrological residence time (HRT). Thus, these findings will be a valuable reference to help the government and non-government organizations (NGO) during strategic planning.


Subject(s)
COVID-19 , Lepidoptera , Humans , Animals , Water Quality , Environmental Monitoring , Ecosystem , Lakes , Pandemics , Remote Sensing Technology , COVID-19/epidemiology , Communicable Disease Control , India , Particulate Matter
2.
Sensors (Basel) ; 21(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34450978

ABSTRACT

Measuring the diffuse attenuation coefficient (Kd) allows for monitoring the water body's environmental status. This parameter is of particular interest in water quality monitoring programs because it quantifies the presence of light and the euphotic zone's depth. Citizen scientists can meaningfully contribute by monitoring water quality, complementing traditional methods by reducing monitoring costs and significantly improving data coverage, empowering and supporting decision-making. However, the quality of the acquisition of in situ underwater irradiance measurements has some limitations, especially in areas where stratification phenomena occur in the first meters of depth. This vertical layering introduces a gradient of properties in the vertical direction, affecting the associated Kd. To detect and characterize these variations of Kd in the water column, it needs a system of optical sensors, ideally placed in a range of a few cm, improving the low vertical accuracy. Despite that, the problem of self-shading on the instrumentation becomes critical. Here, we introduce a new concept that aims to improve the vertical accuracy of the irradiance measurements: the underwater annular irradiance (Ea). This new concept consists of measuring the irradiance in an annular-shaped distribution. We first compute the optimal annular angle that avoids self-shading and maximizes the light captured by the sensors. Second, we use different scenarios of water types, solar zenith angle, and cloud coverage to assess the robustness of the corresponding diffuse attenuation coefficient, Ka. Finally, we derive empirical functions for computing Kd from Ka. This new concept opens the possibility to a new generation of optical sensors in an annular-shaped distribution which is expected to (a) increase the vertical resolution of the irradiance measurements and (b) be easy to deploy and maintain and thus to be more suitable for citizen scientists.


Subject(s)
Citizen Science , Water Quality , Environmental Monitoring , Water
3.
J Environ Sci (China) ; 72: 185-197, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30244745

ABSTRACT

To assess the seasonal and spatial variations and long-term trends in water optical properties in Lake Fuxian, investigations based on field work in four seasons and a long-term analysis of data from 1980 to 2014 were conducted. The results show that there was no significant variation in the euphotic depth (Zeu) across the four seasons, and no significant correlations between Zeu and potential influencing factors in seasons other than summer, suggesting that the water itself may be a major factor regulating the Zeu in general. Nevertheless, significant differences in Zeu between the north region (NR) and the south region (SR) were observed in all seasonal tests except spring. This finding relates to a higher abundance of chromophoric dissolved organic matter (CDOM) in the NR due to runoff, especially in the rainy seasons (summer and autumn). CDOM and its terrigenous component had an important impact on Zeu in summer, with the highest precipitation, and impacts from suspended solids and non-algal particles were also found in the NR in summer. The Secchi disk depth in the lake decreased clearly over the years, with significantly negative correlations with the increasing permanganate index and air temperature, implying that organic contaminants (CDOM and/or phytoplankton) are important regulators of water transparency. We estimate that the combined effects of climate warming and changes in land use and land cover are also indirect regulating factors. These findings should be considered in the protection of Lake Fuxian, owing to the importance of light penetration in aquatic ecosystems.


Subject(s)
Environmental Monitoring , Eutrophication , Lakes/chemistry , Water Pollution/analysis , China , Phytoplankton , Seasons , Temperature , Water Pollution/statistics & numerical data
4.
Sensors (Basel) ; 16(3)2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26999132

ABSTRACT

A critical parameter to assess the environmental status of water bodies is the transparency of the water, as it is strongly affected by different water quality related components (such as the presence of phytoplankton, organic matter and sediment concentrations). One parameter to assess the water transparency is the diffuse attenuation coefficient. However, the number of subsurface irradiance measurements obtained with conventional instrumentation is relatively low, due to instrument costs and the logistic requirements to provide regular and autonomous observations. In recent years, the citizen science concept has increased the number of environmental observations, both in time and space. The recent technological advances in embedded systems and sensors also enable volunteers (citizens) to create their own devices (known as Do-It-Yourself or DIY technologies). In this paper, a DIY instrument to measure irradiance at different depths and automatically calculate the diffuse attenuation Kd coefficient is presented. The instrument, named KdUINO, is based on an encapsulated low-cost photonic sensor and Arduino (an open-hardware platform for the data acquisition). The whole instrument has been successfully operated and the data validated comparing the KdUINO measurements with the commercial instruments. Workshops have been organized with high school students to validate its feasibility.

5.
Sci Total Environ ; 896: 165162, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37379919

ABSTRACT

Large rivers, which act as natural integrators of surface processes, contribute massive volume of terrestrial materials to the coastal oceans. However, the accelerated climate warming and increasing anthropogenic activities recorded in recent years have been severely affecting the hydrologic and physical regimes of river systems. These changes have a direct impact on river discharge and runoff, some of which are occurred rapidly in the past two decades. Here, we present a quantitative analysis on the effects of changes in surface turbidity at coastal river mouths using diffuse attenuation coefficient at 490 nm (Kd490) as a proxy of turbidity for six major Indian peninsular rivers. The time series (2000-2022) trends of Kd490 obtained from Moderate Resolution Imaging Spectrometer (MODIS) images shows a significant decreasing trend in Kd values (p < 0.001) at the mouths of the Narmada, Tapti, Cauvery, Krishna, Godavari, and Mahanadi rivers. This is despite an increased rainfall trend observed for the six studied river basins which can likely intensifies the surface runoff and deliver more sediments, suggesting that other factors such as land use changes and increased number of dam constructions are primarily responsible for the decreased sediment load from rivers to coastal mouths.

6.
Environ Sci Pollut Res Int ; 29(52): 79082-79094, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35701699

ABSTRACT

Cyanobacterial bloom accumulation and dissipation frequently occur in Lake Taihu, a typically shallow, eutrophic lake due to wind wave disturbance. However, knowledge of the driving mechanisms of cyanobacterial blooms on underwater light attenuation is still limited. In this study, we collected a high-frequency in situ monitoring of the wind field, underwater light environment, and surface water quality to elucidate how cyanobacterial bloom accumulation and dissipation affect the variations in underwater light attenuation in the littoral zone of Lake Taihu. Results showed that cyanobacterial blooms significantly increased the diffuse attenuation coefficient of ultraviolet-B (Kd(313)), ultraviolet-A (Kd(340)), and photosynthetically active radiation (Kd(PAR)); the scattering of total suspended matter (bbp(λ)); and the absorption of phytoplankton (aph(λ)) and chromophoric dissolved organic matter (CDOM, ag(λ)) (p < 0.01). The Kd(PAR) decreased quickly during the processes of bloom dissipation, but the decrease of Kd(313) and Kd(340) lagged 0.5 day. Our results suggested that cyanobacterial blooms could increase particle matters and elevated the production of autochthonous CDOM, resulting in underwater light attenuation increase. Ultraviolet radiation (UVR) and PAR attenuation both have significant responses to cyanobacterial blooms, but the response processes were distinct due to the different changes of particle and dissolved organic matters. Our study unravels the driving mechanisms of cyanobacterial blooms on underwater light attenuation, improving lake ecosystem management and protection.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Eutrophication , Ecosystem , Ultraviolet Rays , Environmental Monitoring/methods , China
7.
Sci Total Environ ; 812: 151481, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34752877

ABSTRACT

Seagrass meadows worldwide provide valuable ecosystem services but have experienced sharp declines in recent decades. This rapid loss has prompted numerous restoration efforts with variable levels of success, often depending on the suitability of the restoration sites. The selection of sites can be guided by simple habitat suitability models driven with environmental variables deemed critical to the successful growth of new transplants. Habitat suitability models typically consider the influence of bathymetry, sediment type, salinity, wave exposure, and water quality. However, they typically do not explicitly include benthic exposure to ultraviolet (UV) and commonly use depth as a coarse proxy for photosynthetically active radiation (PAR). Benthic exposure to UV and PAR are both key parameters for habitat suitability but can be challenging to determine, especially in coastal environments influenced by rivers and tides where they are extremely variable. Here, we demonstrate the development of a simple but effective model of spectrally-resolved benthic solar irradiance for a dynamic marsh-influenced mesotidal estuary in Massachusetts. In-situ measurements were used to develop and validate an empirical model predicting the UV-visible vertical diffuse attenuation coefficient spectra of downwelling irradiance, Kd(λ), from simple physical parameters about tides, river discharge and location. Spectral benthic solar irradiances (280-700 nm) were calculated hourly for 3 years (2017-2019) using modeled and validated cloud-corrected surface downwelling irradiances, estimates of water depth, and the modeled Kd(λ) spectra. The mapped irradiances were used to provide improved seagrass habitat suitability maps that will guide future restoration efforts in the estuary. We expect the approach presented here can be adapted to other dynamic coastal environments influenced by tides and rivers and/or applied to other light-dependent organisms and biogeochemical processes.


Subject(s)
Ecosystem , Rivers , Estuaries , Salinity , Water Quality
8.
Sci Total Environ ; 720: 137694, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32325604

ABSTRACT

Underwater light attenuation plays an important role in modulating aquatic ecosystems and is considered a sentinel of climate change and human activity. However, knowledge of the long-term exposure of underwater ultraviolet radiation (UVR) in aquatic ecosystem is still very limited. We carried out extensive UVR measurements in different seasons in five lakes at different altitudes, collected long-term Secchi disk depth (SDD) data, developed the models between UVR diffuse attenuation coefficient (Kd) and SDD, and further assessed the long-term underwater UVR exposure. Observation results from five lakes including 259 samples showed large spatial variabilities of Kd(313) (UVB) from 0.83 to 5.91 m-1 and Kd(340) (UVA) from 0.51 to 4.67 m-1. Chromophoric dissolved organic matter (CDOM) absorption coefficients were significantly correlated with Kd(313) and Kd(340). Thus, the effects of climate change and human activity on CDOM abundance, source and composition may significantly alter UVR attenuation in aquatic environments. The long-term underwater UVR exposure, which was estimated from significant positive correlations between 1/SDD and Kd(313) and Kd(340), and incident UVR, significantly decreased in Lake Fuxianhu, Lake Erhai, and Lake Qiandaohu. The regime shift from clear water state to turbid state in Lake Erhai around 2001-2003 dramatically decreased underwater UVR exposure. In conclusion, increasing UVR attenuation played a more important role in determining underwater UVR exposure than decreasing incident UVR with the relative contributions of 89.9% and 87.7% in Lake Fuxianhu, 98.0% and 97.7% in Lake Erhai, 94.4% and 92.5% in Lake Qiandaohu for UVB and UVA exposure, respectively. This is the first study to elucidate the long-term trend of underwater UVR exposure considering both increasing UVR attenuation and decreasing incident UVR.

9.
Sci Total Environ ; 573: 39-54, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27552729

ABSTRACT

The diffuse attenuation coefficient, Kd(λ), is an important optical property. Environmental change and anthropogenic activities, however, have made it challenging to accurately assess Kd(λ) patterns in the extremely turbid inland waters. We addressed this challenge by using new Landsat 8 Operational Land Imager (OLI) imagery. For the bio-optical complexity of water, we proposed an empirical band-ratio algorithm for estimating Kd(490) using our in situ measurements. Based on the acceptable performance of an OLI image-based atmospheric correction and Kd(490) validation, the algorithm was then applied to OLI images to estimate Kd(490) patterns from April 2013 to April 2016, leading to several key findings: (1) Spatial-temporal patterns of Kd(490) varied significantly in Dongting Lake. The temporal heterogeneity of Kd(490) could be explained primarily by surface-runoff changes driven by regional precipitation. The spatial heterogeneity was due to sediment resuspension, resulting from sand dredging and shipping activities; (2) Kd(490) values that were inversed at the intersection of Dongting Lake and Yangtze River were observed for the first time near the Chengliji site and resulted from the opposing temporal cycle of Kd(490) variations between Dongting Lake and the Yangtze River; (3) There was a significant positive correlation between Kd(490) and total suspended matter (TSM). This confirms that TSM often plays a principal role in the attenuation of light in extremely turbid water bodies; (4) The empirical band-ratio algorithm worked well, not only for the broader Landsat archives, but also for the narrower Sentinel-2/3 for Kd(490) estimation, which demonstrates that the algorithm could be used to quantitatively monitor multi-decade records of Landsat observations and future applications of inland water quality in turbid inland waters, such as Dongting Lake and Poyang Lake.

SELECTION OF CITATIONS
SEARCH DETAIL