Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.768
Filter
Add more filters

Publication year range
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652553

ABSTRACT

Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.


Subject(s)
Mice, Inbred C57BL , Photic Stimulation , Animals , Photic Stimulation/methods , Mice , Male , Contrast Sensitivity/physiology , Visual Cortex/physiology , Neurons/physiology , Primary Visual Cortex/physiology , Species Specificity , Voltage-Sensitive Dye Imaging , Macaca mulatta
2.
Proc Natl Acad Sci U S A ; 119(18): e2202104119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35486697

ABSTRACT

The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell­cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell­cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell­cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell­cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell­cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell­cell channels in different cell types might require special attention.


Subject(s)
Connexins , Nerve Tissue Proteins , Animals , Connexins/metabolism , Humans , Ion Channels , Mammals/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
3.
Nano Lett ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588010

ABSTRACT

Hampered by their susceptibility to nucleophilic attack and chemical bleaching, electron-deficient squaraine dyes have long been considered unsuitable for biological imaging. This study unveils a surprising twist: in aqueous environments, bleaching is not irreversible but rather a reversible spontaneous quenching process. Leveraging this new discovery, we introduce a novel deep-red squaraine probe tailored for live-cell super-resolution imaging. This probe enables single-molecule localization microscopy (SMLM) under physiological conditions without harmful additives or intense lasers and exhibits spontaneous blinking orchestrated by biological nucleophiles, such as glutathione or hydroxide anion. With a low duty cycle (∼0.1%) and high-emission rate (∼6 × 104 photons/s under 400 W/cm2), the squaraine probe surpasses the benchmark Cy5 dye by 4-fold and Si-rhodamine by a factor of 1.7 times. Live-cell SMLM with the probe reveals intricate structural details of cell membranes, which demonstrates the high potential of squaraine dyes for next-generation super-resolution imaging.

4.
J Biol Chem ; 299(6): 104799, 2023 06.
Article in English | MEDLINE | ID: mdl-37164154

ABSTRACT

The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Membrane , Fatty Acids , Membrane Fluidity , Receptors, Adiponectin , Animals , Humans , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Fatty Acids/metabolism , HEK293 Cells , Membrane Fluidity/physiology , Phospholipids/metabolism , Receptors, Adiponectin/metabolism , Protein Binding
5.
Small ; : e2403620, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221703

ABSTRACT

2D nanosheets such as graphene oxide (GO) can be stacked to construct membranes with fine-tuned nanochannels to achieve molecular sieving ability. These membranes are often thin to achieve high water permeance, but their fabrication with consistent nanostructures on a large scale presents an enormous challenge. Herein, GO-based hollow fiber membranes (HFMs) are developed for dye desalination by synergistically combining chemical etching to form in-plane nanopores (10-30 nm) to increase water permeance and polyamine functionalization to improve underwater stability and enable facile large-scale production using existing membrane manufacturing processes. HFM modules with areas of 88 cm2 and GO layer thicknesses of ≈500 nm are fabricated, and they exhibited a stable dye water permeance of 75 L m-2 h-1 bar-1, rejection of >99.5% for Direct red and Congo red, and Na2SO4/dye separation factor of 300-500, superior to state-of-the-art commercial membranes. The versatility of this approach is also demonstrated using different short polyamines and porous substrates. This study reveals a scalable way of designing 2D materials into high-performance robust membranes for practical applications.

6.
Small ; : e2404449, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011980

ABSTRACT

Currently, facing electromagnetic protection requirement under complex aqueous environments, the bacterial reproduction and organic dye corrosion may affect the composition and micro-structures of absorbers to weaken their electromagnetic properties. To address such problems, herein, a series of CoFe2O4@BCNPs (cobalt ferrite @ bio-carbon nanoparticles) composites are synthesized via co-hydrothermal and calcining process. The coupling of magnetic cobalt ferrite and dielectric bio-carbon derived from Apium can endow the composite multiple absorption mechanisms and matched impedance for effective microwave absorption, attaining a bandwidth of 8.12 GHz at 2.36 mm and an intensity of -49.85 dB at 3.0 mm. Due to the ROS (reactive oxygen species) stimulation ability and heavy metal ions of cobalt ferrite, the composite realizes an excellent antibacterial efficiency of 99% against Gram negative bacteria of Escherichia coli. Moreover, the loose porous layer of surface stacked bio-carbon can promote the adsorption of methylene blue for subsequent eliminating, a high removal rate of 90.37% for organic dye can be also achieved. This paper offers a new insight for rational design of composite's component and micro-structure to construct multi-functional microwave absorber for satisfying the electromagnetic protection demand in complicated environments.

7.
Small ; : e2402284, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801397

ABSTRACT

2D lamellar nanofiltration membrane is considered to be a promising approach for desalinating seawater/brackish water and recycling sewage. However, its practical feasibility is severely constrained by the lack of durability and stability. Herein, a ternary nanofiltration membrane via a mixed-dimensional assembly of 2D boron nitride nanosheets (BNNS) is fabricated, 1D aramid nanofibers (ANF), and 2D covalent organic frameworks (COF). The abundant 2D and 1D nanofluid channels endow the BNNS/ANF/COF membrane with a high flux of 194 L·m‒2·h‒1. By the synergies of the size sieving and Donnan effect, the BNNS/ANF/COF membrane demonstrates high rejection (among 98%) for those dyes whose size exceeds 1.0 nm. Moreover, the BNNS/ANF/COF membrane also exhibits remarkable durability and mechanical stability, which are attributed to the strong adhesion and interactions between BNNS, ANF, and COF, as well as the superior mechanical robustness of ANF. This work provides a novel strategy to develop robust and durable 2D lamellar nanofiltration membranes with high permeance and selectivity simultaneously.

8.
Small ; 20(7): e2307849, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37806752

ABSTRACT

Although the layered vanadium oxide-based materials have been considered to be one of the candidates for aqueous Zn-ion batteries (AZIBs), it still faces inevitable challenges of unsatisfactory capacities and sluggish kinetics because of strong electrostatic interactions between Zn-ions and structure lattice. This work addresses the strategy of pre-inserting guest materials to vanadium oxide cathode using different intercalants. To achieve this goal, the small organic dye molecules, methyl orange (MO), and methylene blue (MB) are proposed as the intercalants for vanadium oxygen hydrate (VOH). It has been demonstrated that use of these intercalants can facilitate reaction kinetics between Zn2+ and VOH, leading to an improvement of specific capacity (293 mAh g-1 at 0.3 A g-1 for MO-VOH and 311 mAh g-1 for MB-VOH) compared to VOH, a large enhancement of excellent energy density (237.1 Wh kg-1 for MO-VOH, 232.3 Wh kg-1 for MB-VOH), and a prolong lifespan operation at 3 A g-1 . The mechanism studies suggest that the weakened electrostatic interactions between the Zn-ions and V-O lattice after intercalating organic molecules contribute to boosting the electrochemical performance of AZIBs unveiled by charge density difference and binding energy.

9.
Small ; 20(27): e2308293, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38282181

ABSTRACT

Zeolites have been widely applied as versatile catalysts, sorbents, and ion exchangers with unique porous structures showing molecular sieving capability. In these years, it is reported that some layered zeolites can be delaminated into molecularly thin 2-dimensional (2D) nanosheets characterized by inherent porous structures and highly exposed active sites. In the present study, two types of zeolite nanosheets with distinct porous structures with MWW topology (denoted mww) and ferrierite-related structure (denoted bifer) are deposited on a substrate through the solution process via electrostatic self-assembly. Alternate deposition of zeolite nanosheets with polycation under optimized conditions allows the layer-by-layer growth of their multilayer films with a stacking distance of 2-3 nm. Furthermore, various hierarchical structures defined at the unit-cell dimensions can be constructed simply by conducting the deposition of mww and bifer nanosheets in a designed sequence. Adsorption of a dye, Rhodamine B, in these films, is examined to show that adsorption is dependent on constituent zeolite nanosheets and their assembled nanostructures. This work has provided fundamental advancements in the fabrication of artificial zeolite-related hierarchical structures, which may be extended to other zeolite nanosheets, broadening their functionalities, applications, and benefits.

10.
Small ; 20(4): e2302826, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37794620

ABSTRACT

Photo-rechargeable energy storage devices are appealing for substantial research attention because of their possible applications in the Internet of Things (IoT) and low-powered miniaturized portable electronics. However, due to the incompatibility of the photovoltaics and energy storage systems (ESSs), the overall light-to-storage efficiency is limited under indoor light conditions. Herein, a porous carbon scaffold MnO-Mn3 O4 /C microsphere-based monolithic dye-sensitized photo-rechargeable asymmetric supercapacitor (DSPC) is fabricated. The integrated DSPC has a high areal specific capacitance of 281.9 mF cm-2 at the discharge rate of 0.01 mA cm-2 . The light-to-electrical conversion efficiency of the DSSC is 27.6% under the 1000 lux compact fluorescent lamp (CFL). The DSPC shows an outstanding light-to-charge storage efficiency of 21.6%, which is higher than that reported ever. Furthermore, the fabricated polymer gel electrolyte-based quasi-solid state (QSS) DSPC shows similar overall conversion efficiency with superior cycling capability. This work shows a convenient fabrication process for a wireless power pack of interest with outstanding performance.

11.
Chembiochem ; : e202400538, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073268

ABSTRACT

We report a novel, reversible, cell-permeable, pH-sensor, TRapH. TRapH afforded a pH-sensitive ratiometric emission response in the pH range ~3-6, enabling imaging and quantification of pH in living cells. The biological-applicability of TRapH was illustrated via live-tracking of intracellular pH dynamics in living mammalian cells induced by a synthetic H+-transporter.

12.
Appl Environ Microbiol ; 90(5): e0020524, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38625022

ABSTRACT

Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE: Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.


Subject(s)
Amycolatopsis , Coloring Agents , Glycosides , Coloring Agents/metabolism , Coloring Agents/chemistry , Glycosides/metabolism , Amycolatopsis/metabolism , Amycolatopsis/genetics , Amycolatopsis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Peroxidases/metabolism , Peroxidases/genetics , Peroxidase/metabolism , Peroxidase/chemistry , Peroxidase/genetics , Streptomyces lividans/metabolism , Streptomyces lividans/genetics , Streptomyces lividans/enzymology , Substrate Specificity
13.
Cytometry A ; 105(1): 62-73, 2024 01.
Article in English | MEDLINE | ID: mdl-37772953

ABSTRACT

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a single-cell phenotyping method that uses antibody-derived tags (ADTs) to quantitatively detect cell surface protein expression and generate transcriptomic data at the single-cell level. Despite the increased popularity of this technique to study cellular heterogeneity and dynamics, detailed methods on how to choose ADT markers and ensuring reagent performance in biological relevant systems prior to sequencing is not available. Here we describe a novel and easy-to-use multiplex flow proxy assay in which multiple protein markers can be measured simultaneously using a combination of ADT reagents and dye-oligo conjugates by flow cytometry. Using dye-oligo conjugates with sequences complementary to the ADT reagents, we can achieve specific binding and evaluate protein marker expression in a multiplex way. This quality control assay is useful for guiding ADT marker choice and confirming protein expression prior to sequencing. Importantly, the labeled cells can be directly isolated based on the specific fluorescence from dye-oligo conjugates using a flow cytometry cell sorter and processed for downstream single-cell multiomics. Using this streamlined workflow, we sorted natural killer cells and T cells efficiently using only ADT and dye-oligo reagents, avoiding the possibility of decreased marker resolution from co-staining cells with ADT and fluorescent antibodies. This novel workflow provides a viable option for improving ADT marker choice and cell sorting efficiency, allowing subsequent CITE-Seq.


Subject(s)
Antibodies , T-Lymphocytes , Flow Cytometry/methods , Epitopes , Cell Separation/methods , Antigens , Single-Cell Analysis
14.
Cytometry A ; 105(2): 146-156, 2024 02.
Article in English | MEDLINE | ID: mdl-37786349

ABSTRACT

Flow cytometry is a relevant tool to meet the requirements of academic and industrial research projects aimed at estimating the features of a bacterial population (e.g., quantity, viability, activity). One of the remaining challenges is now the safe assessment of bacterial viability while minimizing the risks inherent to existing protocols. In our core facility at the Paris-Saclay University, we have addressed this issue with two objectives: measuring bacterial viability in biological samples and preventing bacterial contamination and chemical exposure of the staff and cytometers used on the platform. Here, we report the development of a protocol achieving these two objectives, including a viability labeling step before bacteria fixation, which removes the risk of biological exposure, and the decrease of the use of reagents such as propidium iodide (PI), which are dangerous for health (CMR: carcinogenic, mutagenic, and reprotoxic). For this purpose, we looked for a non-CMR viability dye that can irreversibly label dead bacteria before fixation procedures and maintain intense fluorescence after further staining. We decided to test on the bacteria, eFluor Fixable Viability dyes, which are usually used on eukaryotic cells. Since the bacteria had size and granularity characteristics very similar to those associated with flow cytometry background signals, a step of bacterial DNA labeling with SYTO or DRAQ5 was necessarily added to differentiate them from the background. Three marker combinations (viability-DNA) were tested on LSR Fortessa and validated on pure bacterial populations (Gram+ , Gram- ) and polybacterial cultures. Any of the three methods can be used and adapted to the needs of each project and allow users to adapt the combination according to the configuration of their cytometer. Having been tested on six bacterial populations, validated on two cytometers, and repeated at least two times in each evaluated condition, we consider this method reliable in the context of these conditions. The reliability of the results obtained in flow cytometry was successfully validated by applying this protocol to confocal microscopy, permeabilization, and also to follow cultures over time. This flow cytometry protocol for measuring bacterial viability under safer conditions also opens the prospect of its use for further bacterial characterization.


Subject(s)
Bacteria , Fluorescent Dyes , Humans , Microbial Viability , Flow Cytometry/methods , Reproducibility of Results , Propidium/chemistry , Staining and Labeling
15.
Cytometry A ; 105(3): 214-221, 2024 03.
Article in English | MEDLINE | ID: mdl-38116677

ABSTRACT

High dimensional flow cytometry relies on multiple laser sources to excite the wide variety of fluorochromes now available for immunophenotyping. Ultraviolet lasers (usually solid state 355 nm) are a critical part of this as they excite the BD Horizon™ Brilliant Ultraviolet (BUV) series of polymer fluorochromes. The BUV dyes have increased the number of simultaneous fluorochromes available for practical high-dimensional analysis to greater than 40 for spectral cytometry. Immunologists are now seeking to increase this number, requiring both novel fluorochromes and additional laser wavelengths. A laser in the deep ultraviolet (DUV) range (from ca. 260 to 320 nm) has been proposed as an additional excitation source, driven by the on-going development of additional polymer dyes with DUV excitation. DUV lasers emitting at 280 and 320 nm have been previously validated for flow cytometry but have encountered practical difficulties both in probe excitation behavior and in availability. In this article, we validate an even shorter DUV 266 nm laser source for flow cytometry. This DUV laser provided minimal excitation of the BUV dyes (a desirable characteristic for high-dimensional analysis) while demonstrating excellent excitation of quantum nanoparticles (Qdots) serving as surrogate fluorochromes for as yet undeveloped DUV excited dyes. DUV 266 nm excitation may therefore be a viable candidate for expanding high-dimensional flow cytometry into the DUV range and providing an additional incidental excitation wavelength for spectral cytometry. Excitation in a spectral region with strong absorption by nucleic acids and proteins (260-280 nm) did result in strong autofluorescence requiring care in fluorochrome selection. DUV excitation of endogenous molecules may nevertheless have additional utility for label-free analysis applications.


Subject(s)
Fluorescent Dyes , Light , Fluorescent Dyes/metabolism , Flow Cytometry/methods , Lasers , Polymers
16.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R528-R551, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38497126

ABSTRACT

In pilot work, we showed that somatic nerve transfers can restore motor function in long-term decentralized dogs. We continue to explore the effectiveness of motor reinnervation in 30 female dogs. After anesthesia, 12 underwent bilateral transection of coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. Twelve months postdecentralization, eight underwent transfer of obturator nerve branches to pelvic nerve vesical branches, and sciatic nerve branches to pudendal nerves, followed by 10 mo recovery (ObNT-ScNT Reinn). The remaining four were euthanized 18 mo postdecentralization (Decentralized). Results were compared with 18 Controls. Squat-and-void postures were tracked during awake cystometry. None showed squat-and-void postures during the decentralization phase. Seven of eight ObNT-ScNT Reinn began showing such postures by 6 mo postreinnervation; one showed a return of defecation postures. Retrograde dyes were injected into the bladder and urethra 3 wk before euthanasia, at which point, roots and transferred nerves were electrically stimulated to evaluate motor function. Upon L2-L6 root stimulation, five of eight ObNT-ScNT Reinn showed elevated detrusor pressure and four showed elevated urethral pressure, compared with L7-S3 root stimulation. After stimulation of sciatic-to-pudendal transferred nerves, three of eight ObNT-ScNT Reinn showed elevated urethral pressure; all showed elevated anal sphincter pressure. Retrogradely labeled neurons were observed in L2-L6 ventral horns (in laminae VI, VIII, and IX) of ObNT-ScNT Reinn versus Controls in which labeled neurons were observed in L7-S3 ventral horns (in lamina VII). This data supports the use of nerve transfer techniques for the restoration of bladder function.NEW & NOTEWORTHY This data supports the use of nerve transfer techniques for the restoration of bladder function.


Subject(s)
Anal Canal , Motor Neurons , Nerve Transfer , Recovery of Function , Urethra , Urinary Bladder , Animals , Nerve Transfer/methods , Dogs , Female , Urinary Bladder/innervation , Urethra/innervation , Anal Canal/innervation , Anal Canal/surgery , Motor Neurons/physiology , Nerve Regeneration/physiology , Pudendal Nerve/surgery , Pudendal Nerve/physiopathology
17.
Electrophoresis ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091179

ABSTRACT

Various dyes are used to visualize DNA bands in agarose gel electrophoresis (AGE) by the methods of pre- or post-staining. The DNA dye user's guides generally state that the binding of the dye to DNA will affect DNA mobility in electrophoresis, thus recommending post-staining for accurate measurement of DNA size. However, many AGE performers prefer pre-staining procedures for reasons such as convenience, real-time observation of DNA bands, and/or the use of a minimal amount of dye. The detrimental effect of the dye on DNA mobility and the associated risk for inaccurate measurement of DNA size are often overlooked by AGE performers. Here we quantitatively determine the impact on DNA migration imposed by frequently used dyes, including GelRed, ethidium bromide (EB), and Gold View. It was observed that pre-staining with GelRed and EB significantly slowed down DNA migration to cause as much as 39.1% overestimation on the size of sample DNA, whereas Gold View had little effect. The slowdown of DNA migration increased with dye concentration until it plateaued when the dye concentration reached a saturated level. Thus, to take advantage of pre-staining, saturated levels of DNA dyes should always be applied for both DNA samples and DNA markers to ensure a fair comparison of DNA sizes. In addition, GelRed and EB display much higher sensitivity than Gold View in the detection of DNA bands in post-staining. The saturated concentrations, cost considerations, and other useful features of these frequently used dyes are summarized for the information of AGE performers.

18.
Eur J Nucl Med Mol Imaging ; 51(10): 2941-2952, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38581443

ABSTRACT

PURPOSE: The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity. METHODS: We rationalize the donor structure of donor-acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals. RESULTS: Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes. CONCLUSION: In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.


Subject(s)
Surgery, Computer-Assisted , Surgery, Computer-Assisted/methods , Animals , Mice , Optical Imaging/methods , Infrared Rays , Humans , Fluorescent Dyes/chemistry , Female , Cell Line, Tumor , Spectroscopy, Near-Infrared/methods , Nanoparticles/chemistry , Coloring Agents
19.
Chemistry ; 30(13): e202303204, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38018468

ABSTRACT

Control of the intermolecular aggregation of organic π-conjugated molecules as chromophores is crucial for tuning their physical properties such as light absorption/emission, and energy and charge transfer. Lots of advances have been achieved in control of intermolecular aggregation of organic chromophores in solid states where an indefinitely large number of molecules are involved. However, much less understanding has been gained at a mesoscale of aggregates formed by well-defined organization of a deterministic number of chromophores, which has been realized in natural photosynthetic systems but still remains rare in manmade materials. Here, we report both the kinetic and the thermodynamic control of the supramolecular aggregation of a near-infrared cyanine dye, PPcy, and its derivatives confined in colloidal nanoparticles stabilized by surfactants in aqueous media. Our results demonstrate that both the aggregation number, the aggregation state and the optical properties of the PPcy chromophores are controllable through optimization of the alkyl and polymer chains tethered from PPcy, the effective concentration of the chromophore inside each particle, and the surfactants utilized to stabilize the colloids in water.

20.
Chemistry ; 30(10): e202302762, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-37870384

ABSTRACT

Aerogels present a huge potential for removing organic dyes from printing and dyeing wastewater (PDW). However, the preparation of aerogels with multiple dye adsorption capabilities remains a challenge, as many existing aerogels are limited to adsorbing only a single type of dye. Herein, a composite aerogel (CG/T-rGO) with the addition of carboxymethyl chitosan, gelatin and tannic acid reduced graphene oxide (T-rGO) was synthesized by freeze-drying technology. The electrostatic interactions between dye molecular and GEL/CMCS (CG) networks, as well as the supramolecular interactions (H-bonds, electrostatic interactions and π-π stacks) between T-rGO, have endowed the aerogel with the ability to adsorb multiple types of dye, such as methylene blue (MB) and methyl orange (MO). Results exhibited that the prepared CG/T-rGO aerogel possessed strong mechanical strength and a porous 3D network structure with a porosity of 96.33 %. Using MB and MO as adsorbates, the adsorption capacity (88.2 mg/g and 66.6 mg/g, respectively) and the mechanism of the CG/T-rGO aerogel were investigated. The adsorption processes of aerogel for MB and MO were shown to follow the pseudo-second-order kinetic model and Langmuir isotherm model, indicating the chemical adsorption of a monolayer. The proposed aerogel in this work has promising prospects for dye removal from PDW.

SELECTION OF CITATIONS
SEARCH DETAIL