Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
RNA ; 27(9): 1046-1067, 2021 09.
Article in English | MEDLINE | ID: mdl-34162742

ABSTRACT

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.


Subject(s)
Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation, Missense , RNA, Fungal/genetics , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Amino Acid Substitution , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Dwarfism/enzymology , Dwarfism/genetics , Dwarfism/pathology , Exoribonucleases/chemistry , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , Facies , Gene Expression , Glycine/chemistry , Glycine/metabolism , Hearing Loss/enzymology , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Models, Biological , Models, Molecular , Protein Conformation , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Syndrome
2.
Am J Med Genet A ; 188(12): 3535-3539, 2022 12.
Article in English | MEDLINE | ID: mdl-36069504

ABSTRACT

Short stature, hearing loss, retinitis pigmentosa, and distinctive facies (SHRF) Syndrome is a syndrome recently identified among three German patients. Clinical characteristics include eye disease, sensorineural hearing loss, distinct facial and phalangeal features, short stature, developmental delay, and cerebellar atrophy. In this case report, we discuss a fourth identified patient with genomic mutations in the EXOSC2 gene which codes for a cap protein in the RNA exosome. Whole exome sequencing identified two mutations of unknown clinical significance including: a heterozygous maternal variant, missense mutation NM_014285.7: c427G>A (p.Ala143Thr) in exon 6 and a heterozygous paternal variant, splice donor NM_014285.5: c.801+1G>A in intron 8. Our patient demonstrates a novel clinical presentation within the SHRF disease spectrum.


Subject(s)
Deafness , Dwarfism , Hearing Loss , Retinitis Pigmentosa , Humans , Facies , Pedigree , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/genetics , Dwarfism/diagnosis , Dwarfism/genetics , Mutation , Syndrome
3.
Biochem Biophys Res Commun ; 533(4): 1470-1476, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33333712

ABSTRACT

Exosc2 is one of the components of the exosome complex involved in RNA 3' end processing and degradation of various RNAs. Recently, EXOSC2 mutation has been reported in German families presenting short stature, hearing loss, retinitis pigmentosa, and premature aging. However, the in vivo function of EXOSC2 has been elusive. Herein, we generated Exosc2 knockout (exosc2-/-) zebrafish that showed larval lethality 13 days post fertilization, with microcephaly, loss of spinal motor neurons, myelin deficiency, and retinitis pigmentosa. Mechanistically, Exosc2 deficiency caused impaired mRNA turnover, resulting in a nucleotide pool imbalance. Rapamycin, which modulated mRNA turnover by inhibiting the mTOR pathway, improved nucleotide pool imbalance in exosc2-/- zebrafish, resulting in prolonged survival and partial rescue of neuronal defects. Taken together, our findings offer new insights into the disease pathogenesis caused by Exosc2 deficiency, and might help explain fundamental molecular mechanisms in neuronal diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy.


Subject(s)
Nucleotides/metabolism , Zebrafish/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Embryo, Nonmammalian/abnormalities , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Larva/genetics , Larva/physiology , Motor Neurons/drug effects , Motor Neurons/pathology , Myelin Basic Protein/genetics , Nucleotides/genetics , Sirolimus/pharmacology , Zebrafish/embryology
4.
RNA ; 24(2): 127-142, 2018 02.
Article in English | MEDLINE | ID: mdl-29093021

ABSTRACT

The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.


Subject(s)
Disease/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation , Coenzymes/genetics , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , Humans , Protein Subunits/genetics , RNA-Binding Proteins/genetics
5.
J Med Genet ; 53(6): 419-25, 2016 06.
Article in English | MEDLINE | ID: mdl-26843489

ABSTRACT

BACKGROUND: Retinitis pigmentosa in combination with hearing loss can be a feature of different Mendelian disorders. We describe a novel syndrome caused by biallelic mutations in the 'exosome component 2' (EXOSC2) gene. METHODS: Clinical ascertainment of three similar affected patients followed by whole exome sequencing. RESULTS: Three individuals from two unrelated German families presented with a novel Mendelian disorder encompassing childhood myopia, early onset retinitis pigmentosa, progressive sensorineural hearing loss, hypothyroidism, short stature, brachydactyly, recognisable facial gestalt, premature ageing and mild intellectual disability. Whole exome sequencing revealed homozygous or compound heterozygous missense variants in the EXOSC2 gene in all three patients. EXOSC2 encodes the 'ribosomal RNA-processing protein 4' (RRP4)-one of the core components of the RNA exosome. The RNA exosome is a multiprotein complex that plays key roles in RNA processing and degradation. Intriguingly, the EXOSC2-associated phenotype shows only minimal overlap with the previously reported diseases associated with mutations in the RNA exosome core component genes EXOSC3 and EXOSC8. CONCLUSION: We report a novel condition that is probably caused by altered RNA exosome function and expands the spectrum of clinical consequences of impaired RNA metabolism.


Subject(s)
Aging, Premature/genetics , Dwarfism/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Hearing Loss/genetics , Intellectual Disability/genetics , Mutation, Missense/genetics , RNA-Binding Proteins/genetics , Retinitis Pigmentosa/genetics , DNA Mutational Analysis/methods , Exome/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Pedigree , Phenotype , Syndrome
6.
Mol Biotechnol ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856011

ABSTRACT

BC (breast cancer) is the leading cause of cancer death in women. Exosome component 2 (EXOSC2), an RNA exosome component, is elevated in BC tissues and may relate to BC carcinogenesis. In this work, the high EXOSC2 expression was correlated with TNM (Tumor Node Metastasis) stage. Moreover, overexpression of EXOSC2 enhanced tumorigenic capacity of BC cells via facilitating cell proliferation and cell cycle progression, increasing migration and angiogenesis, as well as exacerbating xenograft formation in vivo. Whereas, EXOSC2 knockdown showed anti-cancer effects, including inhibition of cell proliferation and angiogenesis. Mechanistically, EXOSC2 activated the wnt/ß-catenin pathway, which was also abolished by EXOSC2 knockdown. In addition, there were m6A methylation modification sites in the mRNA of EXOSC2. WTAP (Wilms tumor 1-associated protein) bound to EXOSC2 mRNA and increased its m6A methylation, resulting in extending the half-life of EXOSC2 mRNA. Luciferase data also confirmed that WTAP enhanced EXOSC2 mRNA stability through binding with the 3'-UTR containing m6A sites. Furthermore, WTAP silencing exhibited cancer-inhibiting effects on cell viability, cell cycle progression and tube formation, which was effectively reversed by EXOSC2 overexpression. In conclusion, our results demonstrate that EXOSC2 promotes the malignant behaviors of BC cells via activating the wnt/ß-catenin pathway. In addition, EXOSC2 mediates the function of WTAP which contributes to the m6A modification of EXOSC2. Totally, this study suggested that EXOSC2 mediated the pro-tumor role of WTAP via activating the wnt/ß-catenin signal.

7.
G3 (Bethesda) ; 13(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-36861343

ABSTRACT

The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; yeast Rrp41/42/43/45/46/Mtr3), and a singular 3'-5' exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in structural cap and core RNA exosome genes. In this study, we characterize a rare multiple myeloma patient missense mutation that was identified in the cap subunit gene EXOSC2. This missense mutation results in a single amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest that this Met40 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction between the RNA exosome complex and this cofactor. To assess this interaction in vivo, we utilized the Saccharomyces cerevisiae system and modeled the EXOSC2 patient mutation into the orthologous yeast gene RRP4, generating the variant rrp4-M68T. The rrp4-M68T cells show accumulation of certain RNA exosome target RNAs and show sensitivity to drugs that impact RNA processing. We also identified robust negative genetic interactions between rrp4-M68T and specific mtr4 mutants. A complementary biochemical approach revealed that Rrp4 M68T shows decreased interaction with Mtr4, consistent with these genetic results. This study suggests that the EXOSC2 mutation identified in a multiple myeloma patient impacts the function of the RNA exosome and provides functional insight into a critical interface between the RNA exosome and Mtr4.


Subject(s)
Multiple Myeloma , Saccharomyces cerevisiae Proteins , Humans , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/metabolism , RNA/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
RNA Dis ; 72020.
Article in English | MEDLINE | ID: mdl-34676290

ABSTRACT

Exosomopathies are a collection of rare diseases caused by mutations in genes that encode structural subunits of the RNA exosome complex (EXOSC). The RNA exosome is critical for both processing and degrading many RNA targets. Mutations in individual RNA exosome subunit genes (termed EXOSC genes) are linked to a variety of distinct diseases. These exosomopathies do not arise from homozygous loss-of-function or large deletions in the EXOSC genes likely because some level of RNA exosome activity is essential for viability. Thus, all patients described so far have at least one allele with a missense mutation encoding an RNA exosome subunit with a single pathogenic amino acid change linked to disease. Understanding how these changes lead to the disparate clinical presentations that have been reported for this class of diseases necessitates investigation of how individual pathogenic missense variants alter RNA exosome function. Such studies will require access to patient samples, a challenge for these very rare diseases, coupled with modeling the patient variants. Here, we highlight five recent studies that model pathogenic variants in EXOSC3, EXOSC2, and EXOSC5.

9.
Methods Mol Biol ; 2062: 3-33, 2020.
Article in English | MEDLINE | ID: mdl-31768969

ABSTRACT

The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.


Subject(s)
Disease/genetics , Exosomes/genetics , RNA/genetics , Animals , Humans , Mutation/genetics
10.
Genetics ; 205(1): 221-237, 2017 01.
Article in English | MEDLINE | ID: mdl-27777260

ABSTRACT

Pontocerebellar hypoplasia type 1b (PCH1b) is an autosomal recessive disorder that causes cerebellar hypoplasia and spinal motor neuron degeneration, leading to mortality in early childhood. PCH1b is caused by mutations in the RNA exosome subunit gene, EXOSC3 The RNA exosome is an evolutionarily conserved complex, consisting of nine different core subunits, and one or two 3'-5' exoribonuclease subunits, that mediates several RNA degradation and processing steps. The goal of this study is to assess the functional consequences of the amino acid substitutions that have been identified in EXOSC3 in PCH1b patients. To analyze these EXOSC3 substitutions, we generated the corresponding amino acid substitutions in the Saccharomyces cerevisiae ortholog of EXOSC3, Rrp40 We find that the rrp40 variants corresponding to EXOSC3-G31A and -D132A do not affect yeast function when expressed as the sole copy of the essential Rrp40 protein. In contrast, the rrp40-W195R variant, corresponding to EXOSC3-W238R in PCH1b patients, impacts cell growth and RNA exosome function when expressed as the sole copy of Rrp40 The rrp40-W195R protein is unstable, and does not associate efficiently with the RNA exosome in cells that also express wild-type Rrp40 Consistent with these findings in yeast, the levels of mouse EXOSC3 variants are reduced compared to wild-type EXOSC3 in a neuronal cell line. These data suggest that cells possess a mechanism for optimal assembly of functional RNA exosome complex that can discriminate between wild-type and variant exosome subunits. Budding yeast can therefore serve as a useful tool to understand the molecular defects in the RNA exosome caused by PCH1b-associated amino acid substitutions in EXOSC3, and potentially extending to disease-associated substitutions in other exosome subunits.


Subject(s)
Cerebellar Diseases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Mutation , Saccharomyces cerevisiae/genetics , Cerebellar Diseases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , RNA Stability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL