Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893285

ABSTRACT

In the study, natural deep eutectic solvents (NADESs) were used as alternatives to traditional chemical solvents for the extraction of polyphenols from Elaeagnus angustifolia L. Nine NADESs were tested for the first time and compared with ethanol and water (traditional solvents) regarding the extraction of phenolic compounds from E. angustifolia L. These solvents were particularly effective at extracting polyphenols, whose low water solubility usually requires high amounts of organic solvents. The solvent based on choline chloride and malonic acid provided optimal results and was selected for further optimization. The effects of material-to-liquid ratio, ultrasound time, and ultrasound temperature on the extraction efficiency were studied through single-factor experiments. These parameters were optimized by Box-Behnken design using response surface methodology. The optimal conditions identified were 49.86 g/mL of material-to-liquid ratio, 31.10 min of ultrasound time, and 62.35 °C of ultrasound temperature, resulting in a high yield of 140.30 ± 0.19 mg/g. The results indicated that the NADES extraction technique provided a higher yield than the conventional extraction process. The antioxidant activity of the extract of polyphenols from E. angustifolia L. was determined, and UPLC-IMS-QTOF-MS was used to analyze the phenolic compounds in it. The results revealed that the scavenging ability of 1,1-diphenyl-2-picryl-hydrazil and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) extracted by NADES was higher than that of polyphenols extracted by water and ethanol. Furthermore, a total of 24 phenolic compounds were identified in the extract. To the best of our knowledge, this is the first study in which a green and efficient NADES extraction method has been used to extract bioactive polyphenols from E. angustifolia L., which could provide potential value in pharmaceuticals, cosmetics, and food additives.


Subject(s)
Antioxidants , Elaeagnaceae , Plant Extracts , Polyphenols , Polyphenols/chemistry , Polyphenols/isolation & purification , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Elaeagnaceae/chemistry , Deep Eutectic Solvents/chemistry , Green Chemistry Technology , Solvents/chemistry
2.
Odontology ; 111(2): 461-473, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36350427

ABSTRACT

Dental pulp stem cells (DPSCs) are a new type of mesenchymal stem cells (MSCs) found in the oral cavity with immunomodulation and tissue regeneration capacities. This study determined the impacts of nano-hydroxyapatite (nHA) prepared through Elaeagnus Angustifolia extract (EAE) to enhance the relative expression of immunomodulatory/dentin-pulp regeneration genes in DPSCs. To produce nHA and modified nHA via EAE (nHAEA), the sol-gel technique was used. The functional groups of nanoparticles (NPs), morphological, and optical features were determined using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) together with energy-dispersive X-ray analysis (EDAX), and Transmission electron microscopy (TEM). The cell viability was then determined using the MTT method in the presence of various EAE, nHA, and nHAEA concentrations. Target gene expression was quantified using a real-time PCR procedure after treating DPSCs with an optimally non-toxic dose of EAE and NPs. The presence of the HA phase was reported with the XRD and FTIR results. According to the results of SEM and TEM, the rod-like NPs could be fabricated. nHAEAs were found to be characterized with low crystallite size, reduced diameter, lengthier, needle-like, and less agglomerated particles compared with nHA. The real-time PCR results demonstrated that nHAEA remarkably increased the expression of human leukocyte antigen-G5 (HLA-G5), vascular endothelial growth factor (VEGF), dentin sialophosphoprotein (DSPP), and interleukin6 (IL6) genes compared to the nHA group. These findings suggest that nHAEAs might have the potential application in the stemness capability of DPSCs for the treatment of inflamed/damaged pulp.


Subject(s)
Dental Pulp , Durapatite , Humans , Durapatite/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Stem Cells , Regeneration , Cell Differentiation , Dentin , Cells, Cultured , Cell Proliferation
3.
J Environ Manage ; 305: 114401, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34974219

ABSTRACT

Saline-alkali environments are widely distributed in China and significantly hinder the development of agriculture. This study characterizes the long-term effects of planting Elaeagnus angustifolia (E. angustifolia) on the physical and chemical properties, enzyme activities and microbial community characteristics of saline-alkali soil in the Songnen Plain (1, 2 and 3 years). The results showed that planting E. angustifolia reduced soil pH and electrical conductivity (EC) and increased soil total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (Nni), total potassium (TK), dissolved organic C (DOC), dissolved organic matter (DOM) and available potassium (AK) content and catalase, urease, polyphenol oxidase, phosphatase, sucrase and cellulase enzyme activities, and the results peaked in the 3 year. High-throughput sequencing showed that the bacterial abundance and diversity were as follows (from high to low) y3 > y2 > y1 > CK. E. angustifolia resulted in an increase in the relative abundance of the dominant bacteria. Proteobacteria and Pseudomonas were the major phylum and genus, respectively. Redundancy analysis showed that changes in the soil microbial community significantly affect the physical and chemical properties of the soil, with Proteobacteria members being the key microorganisms that reduce soil salinity. Network analysis showed that Pseudomonas (Proteobacteria) participated in the synthesis of key soil enzymes. 16S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, acsB, Pcc and accA) and nitrogen (amoA/B, nxrA, hao, gdh, ureC and nosZ) transformation increased, and Pseudomonas members were key regulators of carbon and nitrogen dynamics. In conclusion, the planting of E. angustifolia could improve the physical and chemical properties of the soil by releasing root exudates into the soil and increasing the diversity and richness of soil microbial communities to improve saline-alkali soil, providing a theoretical basis for improving saline-alkali soil and promoting the sustainable development of modern agriculture.


Subject(s)
Elaeagnaceae , Microbiota , Alkalies , Dissolved Organic Matter , Health Status , Nitrogen/analysis , RNA, Ribosomal, 16S , Soil , Soil Microbiology
4.
Molecules ; 27(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268631

ABSTRACT

In Iran and other parts of Western Asia, the oleaster (Elaeagnus angustifolia L.) fruit is processed in the dried powdery form, and in recent times, increasingly applied/sprinkled in fruit juices such as those made from oranges (Citrus sinensis L.). To our best knowledge, the effectiveness of oleaster fruit extract in fortifying the orange juice has not yet been reported and the knowledge of this will greatly benefit the consumers, particularly those around the Western Asia region. This current work, therefore, investigated the changes in physicochemical, free radical activity, total phenolic compounds, and sensory properties of orange juice fortified with different oleaster fruit extracts. The orange juice mix formulation comprised different concentrations (5, 10, 15, 20, and 25%) of oleaster (alcoholic, aqueous, and hydro-alcoholic) extracts. The control comprised orange concentrate (4% w/v), sugar (8.5% w/v), and citric acid (0.1% w/v) brought to the desirable volume with water. As the free radical activity depicted the antioxidant properties, the physicochemical aspects of this work involved the determinations of Brix, density, ash, pH, total acidity, sucrose, and total sugar, whereas the sensory aspects involved the determinations of color and taste. Whilst the aqueous oleaster 20 and 25% extracts produced notable physicochemical differences in the orange juice mix, both free radical activity, and phenolic compounds significantly increased (p < 0.05) after 30 days despite resembling (p > 0.05) those of control at day 1. More so, the increases in aqueous, alcoholic, and hydro-alcoholic oleaster extracts would decrease (p < 0.05) the sensory color and taste of the orange juice mix in this study.


Subject(s)
Citrus sinensis , Citrus , Elaeagnaceae , Citrus sinensis/chemistry , Free Radicals/analysis , Fruit/chemistry , Fruit and Vegetable Juices , Plant Extracts/chemistry
5.
Inflammopharmacology ; 30(5): 1759-1768, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35723848

ABSTRACT

N-Acetylcysteine (NAC) is a chemical compound with anti-inflammatory and antioxidant activity and acts as a free radical scavenger. Elaeagnus angustifolia (EA) is a plant native to the western part of Iran, with antioxidant and anti-inflammatory properties. The present study been taken evaluated the protective effect afforded by EA and NAC extracts on carrageenan-induced acute lung injury in Wistar rats. In this study, 42 rats were randomly assigned into seven groups. NAC and EA extracts were orally administered once/day for 21 continuous days. Pulmonary damage was induced by intratracheal injection of 100 µl of 2% λ-Carrageenan on day 21. Twenty-four hours post-surgery, the rats were euthanized and the samples were collected. Pretreatment with NAC and EA extracts reduced the total and differential cell accumulation as well as IL-6, and TNF-α cytokines. Antioxidant indicators demonstrate that in the groups receiving NAC and EA extract, MDA decreased while thiol and antioxidant capacity elevated. Treatment with NAC and EA significantly reduced Carrageenan-induced pathological pulmonary tissue injury. NAC and EA extract has protective effects on acute carrageenan-induced lung injury.


Subject(s)
Acute Lung Injury , Elaeagnaceae , Acetylcysteine/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Carrageenan/pharmacology , Cytokines , Elaeagnaceae/chemistry , Free Radical Scavengers/pharmacology , Interleukin-6 , Lung , Plant Extracts/pharmacology , Rats , Rats, Wistar , Sulfhydryl Compounds/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
6.
BMC Oral Health ; 22(1): 505, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36384581

ABSTRACT

PURPOSE: The green synthesis of nanoparticles has recently opened up a new route in material production. The aim of this study was to evaluate the effect of nanohydroxyapatite (nHA) synthesized from Elaeagnus angustifolia (EA) extract in polycaprolactone (PCL) nanofibers (PCL/nHAEA) to odontogenic differentiation of dental pulp stem cells (DPSCs) and their potential applications for dentin tissue engineering. METHODS: Green synthesis of nHA via EA extract (nHAEA) was done by the sol-gel technique. Then electrospun nanocomposites containing of PCL blended with nHA (P/nHA) and nHAEA (P/nHAEA) were fabricated, and the characterization was evaluated via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and the contact angle. The morphology of nanofibers and the cell adhesion capacity of DPSCs on nanofibers were evaluated using SEM. Cytocompatibility was assessed by MTT. Osteo/odontogenic differentiation ability of the nanocomposites were assessed using alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and quantitative real-time polymerase chain reaction (qPCR) technique. RESULTS: Viability and adhesion capacity of DPSCs were higher on P/nHAEA nanofibers than PCL and P/nHA nanofibers. ARS assay, ALP activity, and qPCR analysis findings confirmed that the nHAEA blended nanofibrous scaffolds substantially increased osteo/odontogenic differentiation of DPSCs. CONCLUSION: PCL/nHAEA nanocomposites had a noticeable effect on the odontogenic differentiation of DPSCs and may help to improve cell-based dentin regeneration therapies in the future.


Subject(s)
Dental Pulp , Nanocomposites , Humans , Odontogenesis , Cell Differentiation , Stem Cells
7.
J Fluoresc ; 31(1): 185-193, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33196957

ABSTRACT

This article has introduced and examined a novel and green approach for the very first time, which had been developed for the synthesis of carbon dots (CDs) and performed through the utilization of Elaeagnus angustifolia (E. A) as a natural carbon source. This straightforward procedure has been based upon a hydrothermal treatment with a quantum yield of 16.8% that had been designed to synthesize water-soluble CDs in one step and result in a satisfying fluorescence. Additionally, we have attempted to assess the sensing system that had been exerted through the usage of CDs for the detection of food colorant tartrazine, since they can function as a fluorescent sensor due to the interplay that occurs among tartrazine and CDs leading to the quenching of their fluorescence. The detection limit has been measured to be equaled to 0.086 µM (86 nM) and the linear range has been observed to be 0.47-234 µM. The proposed highly sensitive and simple method has exhibited an excellent selectivity and proved to be effectively applicable for distinguishing the tartrazine of real samples.


Subject(s)
Elaeagnaceae/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Tartrazine/analysis , Green Chemistry Technology , Spectrometry, Fluorescence , Tartrazine/chemistry
8.
Int J Phytoremediation ; 23(7): 693-703, 2021.
Article in English | MEDLINE | ID: mdl-33222511

ABSTRACT

In this study, activated carbon was obtained from Elaeagnus angustifolia seeds and its usability in the adsorption of methylene blue (MB) and malachite green (MG) from aqueous solution was investigated. Activated carbon was synthesized by chemical activation method using H3PO4 as an activator. In the synthesis of the activated carbon, the effects of various parameters such as the rate of impregnation, duration of activation, temperature of activation and duration of activation were investigated. The characterization of the synthesized activated carbons was carried out by FTIR, SEM and BET analyses and the surface area of the produced activated carbon was determined to be 1,194 m2 g-1. The effects of solution initial pH, solution initial concentration and amount of activated carbon on MB and MG adsorption were investigated. The adsorption capacity was found to be higher when the pH of the solution was 8 for MB and 4 for MG. The adsorption kinetics of MB and MG were found to fit the Elovich kinetic model and pseudo-first-order kinetic model, respectively. Adsorption equilibrium data were found to be compatible with Langmuir isotherm for both dyes. According to the Langmuir isotherm, qmax adsorption capacity was found to be 72 mg/g and 115 mg/g for MB and MG, respectively. Novelty Activated carbon was obtained from Elaeagnus angustifolia seeds and its usability in the adsorption of methylene blue (MB) and malachite green (MG) from aqueous solution was investigated. A high surface area activated carbon was synthesized. The surface area of the produced activated carbon was determined to be 1,194 m2 g-1. According to the Langmuir isotherm, qmax adsorption capacity was found to be 72 mg/g and 115 mg/g for MB and MG, respectively. It has been determined that the adsorption capacity of synthesized activated carbon is high.


Subject(s)
Elaeagnaceae , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Charcoal , Hydrogen-Ion Concentration , Kinetics , Methylene Blue , Rosaniline Dyes , Seeds
9.
J Environ Manage ; 270: 110855, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32501241

ABSTRACT

Coal mining activities remain of great environmental concern because of several negative impacts on soil ecosystems. Appropriate revegetation interventions of coal-spoiled lands can provide environmental management solutions to restore soil degraded ecosystems. The present study addressed the potential of the pioneer woody species, Elaeagnus angustifolia, in the restoration of coal-mined spoils under a range of different water (W) levels and nitrogen (N) and phosphorus (P) applications. Our results show how moderate applications of N (N60 = 60 mg N kg-1 soil) and P (P90 = 90 mg P kg-1 soil) fertilizers led either to maximum or minimum growth performance of E. angustifolia depending on whether W was applied at very high (W80 = 80% field capacity) or very low (W40 = 40% field capacity) levels suggesting that W was the main limiting factor for plant growth. Very low-W regime (W40N60P90) also caused significant reduction of photosynthetic parameters, including net photosynthetic rate, transpiration rate and water use efficiency. The combination of high W-N doses with low P doses (W70N96P36) positively influenced gas-exchange parameters, chlorophyll and carotenoid contents. Seedlings treated with low-W and -N doses (W50N24P144) showed highest increases in malondialdehyde content and lowest levels of relative water content (RWC). Decreases in malondialdehyde content and increases in RWC were observed following a gradual increment of W and N doses, indicating that high W and N doses contributed to drought tolerance of E. angustifolia by protecting cell membranes and increasing water status. Low-W and -N applications considerably increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and the contents of proline and soluble sugars, suggesting that E. angustifolia developed defensive strategies to avoid damage induced by water scarcity. Results from heatmap and principal component analyses confirmed that W and N were the main clustering factors, and both N and P performed well at high-W dose. The optimum growth performance of E. angustifolia was found under a combination of W level at 66.0% of field capacity, N dose of 74.0 mg kg-1 soil, and P dose of 36.0 mg kg-1 soil. Our findings demonstrate how optimum growth performance of E. angustifolia can be achieved by fine-tuning doses of W, N, and P resources, and how this in turn could greatly support the ecological restoration of coal-mined degraded environments.


Subject(s)
Elaeagnaceae , Soil , Coal , Ecosystem , Fertilizers , Nutrients , Water
10.
Molecules ; 25(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947764

ABSTRACT

Elaeagnus angustifolia (EA) is a medicinal plant used for treating several human diseases in the Middle East. Meanwhile, the outcome of EA extract on HER2-positive breast cancer remains nascent. Thus, we herein investigated the effects of the aqueous EA extract obtained from the flowers of EA on two HER2-positive breast cancer cell lines, SKBR3 and ZR75-1. Our data revealed that EA extract inhibits cell proliferation and deregulates cell-cycle progression of these two cancer cell lines. EA extract also prevents the progression of epithelial-mesenchymal transition (EMT), an important event for cancer invasion and metastasis; this is accompanied by upregulations of E-cadherin and ß-catenin, in addition to downregulations of vimentin and fascin, which are major markers of EMT. Thus, EA extract causes a drastic decrease in cell invasion ability of SKBR3 and ZR75-1 cancer cells. Additionally, we found that EA extract inhibits colony formation of both cell lines in comparison with their matched control. The molecular pathway analysis of HER2 and JNK1/2/3 of EA extract exposed cells revealed that it can block HER2 and JNK1/2/3 activities, which could be the major molecular pathway behind these events. Our findings implicate that EA extract may possess chemo-preventive effects against HER2-positive breast cancer via HER2 inactivation and specifically JNK1/2/3 signaling pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Elaeagnaceae/chemistry , Epithelial-Mesenchymal Transition/drug effects , Plant Extracts/chemistry , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Down-Regulation/drug effects , Elaeagnaceae/metabolism , Female , Flowers/chemistry , Flowers/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Up-Regulation/drug effects , Vimentin/metabolism , beta Catenin/metabolism
11.
Molecules ; 25(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979069

ABSTRACT

A new triterpenoid saponin, named terpengustifol A (1), and two new lignan glucosides, phengustifols A and B (2 and 3), were isolated from the flowers of Elaeagnus angustifolia. Their structures were determined by the extensive analysis of the spectroscopic data (including NMR and HRMS) and ECD calculations. Compound 1 possesses an unusual monoterpene (Z)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl unit at C-21. Compounds 2 and 3 are a pair of diastereoisomers, while their aglycones are a pair of enantiomers. Compounds 1 and 2 exhibited moderate cytotoxic activities against A375 cell lines with IC50 values at 12.1 and 15.6 µM, respectively. This is firstly reported the triterpenoid saponin and lignans isolated from the Elaeagnus angustifolia flowers.


Subject(s)
Elaeagnaceae/chemistry , Glycosides/chemistry , Lignans/chemistry , Flowers/chemistry , Medicine, Traditional , Triterpenes/chemistry
12.
Molecules ; 25(9)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357533

ABSTRACT

Fully ripe fruits and mature leaves of Elaeagnus angustifolia were harvested and analyzed by means of analytical and biological tests to better comprehend the chemical composition and therapeutic/nutraceutical potential of this plant. Fruits and leaves were dried and the obtained powders were analyzed to study their color character and (via headspace gas chromatography) describe the chemical profile. Subsequently, they were submitted to a chloroform-methanol extraction, to a hydroalcoholic extraction procedure assisted or not by microwaves, and to an extraction with supercritical CO2, assisted or not by ethanol as the co-solvent, to detect the polyphenolic and the volatile content. The resulting extracts were evaluated in terms of chlorophyll and carotenoid content, polyphenolic content, volatile fraction, total phenolic content, total flavonoid content, antioxidant activity, radical scavenging activity, and enzymatic inhibition activity. The results confirmed the correlation between the chemical composition and the high antioxidant potential of leaf extracts compared to the fruit extracts in terms of the phenolic and pigment content. A promising effect against tyrosinase emerged for all the extracts, suggesting a therapeutic/nutraceutical use for this plant. Conversely, the volatile content from both natural matrices was similar.


Subject(s)
Antioxidants/analysis , Carotenoids/analysis , Elaeagnaceae/chemistry , Flavonoids/analysis , Fruit/chemistry , Plant Extracts/analysis , Plant Leaves/chemistry , Polyphenols/analysis , Antioxidants/chemistry , Carotenoids/chemistry , Chloroform/chemistry , Chlorophyll/analysis , Chromatography, Gas , Chromatography, High Pressure Liquid , Color , Flavonoids/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Methanol/chemistry , Microwaves , Monophenol Monooxygenase/antagonists & inhibitors , Phenols/analysis , Phenols/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Powders , Solvents/chemistry
13.
Ecotoxicol Environ Saf ; 182: 109410, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31284122

ABSTRACT

Cerium oxide nanoparticles (nanoceria) were synthesized by a novel, simple green chemistry procedure using Elaeagnus angustifolia leaf extract as a reducing and capping agent. The crystalline nature of nanoceria was confirmed by XRD analysis. FTIR analysis revealed that phytochemicals are present on the surface of nanoceria. SEM and TEM images revealed that the nanoceria are well dispersed, spherical in shape with a particle size range in between 30 and 75 nm. Thereafter, the effects of various concentrations of cerium oxide (CeO2) and green synthesized nanoceria on growth and metabolism of Solanum lycopersicum (tomato) were investigated. The bio-accumulation of Ce in tomato seedlings was found to be dose dependent and the results showed that with the increase in exposure concentrations, the accumulation of Ce contents in both root and shoots augmented. However, unlike nanoceria treated seedlings, Ce contents in the roots with CeO2 treatments were negligible than that in the shoots at lower concentrations and this suggested the immobilization of Ce in CeO2 treatment at lower concentrations. Nanoceria at 500 and 1000 mg/L resulted in inhibitory effect on growth of test plant as compared to CeO2 component. The exposure of plants to nanoceria and CeO2 has resulted in significant reduction in pigment content, increased LP, EL and H2O2 content. The activities of antioxidant enzymes viz. SOD, CAT, APX and GPX were significantly up regulated on exposure of nanoceria and CeO2. It is concluded that plant exposure with nanoceria at concentrations of 20 and 100 mg/L were more beneficial for growth and metabolism of tomato plants than that of CeO2 at equivalent concentrations.


Subject(s)
Antioxidants/metabolism , Cerium/pharmacology , Green Chemistry Technology/methods , Nanoparticles/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/enzymology , Biological Transport , Cerium/chemistry , Cerium/metabolism , Elaeagnaceae/chemistry , Hydrogen Peroxide/metabolism , Particle Size , Plant Extracts/chemistry
14.
Environ Monit Assess ; 190(6): 355, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29789963

ABSTRACT

The afforestation of arid lands faces many challenges, and perhaps the most important key for success is choosing one or more species that are adapted well for local environmental conditions. We explored species that would be suitable for the steppe region of Central Anatolia. Intensive site preparation included ripping the subsoil (to 80 cm) and plowing the upper soil before planting seedlings of Elaeagnus angustifolia, Robinia pseudoacacia, Fraxinus angustifolia, and Pinus nigra were used as tree species. We also tested the success of several shrub species: Amygdalus orientalis, Calligonum polygonoides, and Spartium junceum. After five growing seasons, E. angustifolia showed the highest survival, with 80% of planted seedlings remaining. For the shrubs, A. orientalis was the most successful species with a 95% survival rate. Broad-leaved trees grew a cumulative average of 34 cm in height in 5 years, whereas P. nigra seedings grew only 9 cm. The greatest height growth occurred in the shrubs, with A. orientalis gaining 40 cm in height in 5 years. Overall, E. angustifolia and A. orientalis appeared best suited for afforestation in these areas. R. pseodoacacia and F. angustifolia may also be used as alternative species.


Subject(s)
Fraxinus/growth & development , Pinus/growth & development , Robinia/growth & development , Forests , Seedlings/growth & development , Soil , Trees , Turkey
15.
Zhongguo Zhong Yao Za Zhi ; 43(9): 1749-1753, 2018 May.
Article in Zh | MEDLINE | ID: mdl-29902880

ABSTRACT

Seven aromatic glycosides (1-7), including four phenylethanol glycosides, one phenylmethanol glycoside, one phenylpropane glycoside and one benzoside, were isolated from the methanolic extract of Uighur Medicine Elaeagnus angustifolia flowers. Their structures were elucidated based on the analysis of spectroscopic data (1D, 2D NMR and HR-MS). Compound 1 is a new compound, named as angustifol A. Six known compounds were identified as 2-phenylethyl-O-ß-D-glucopyranoside(2), salidroside (3), vanillic acid 4-O-ß-D-glucopyranoside(4), vanilloloside (5), (Z)-isoconiferin (6), 2-phenylethyl-6-O-α-L-arabinofuranosyl-ß-D-glucopyranoside (7). Compounds 2-7 were isolated from the genus Elaeagnus for the first time. In vitro anti-inflammatory assays revealed that none of these compounds showed good COX inhibitory activities.


Subject(s)
Elaeagnaceae , Plants, Medicinal , Flowers , Glycosides , Herbal Medicine , Molecular Structure
16.
Toxicol Ind Health ; 32(1): 154-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-24081630

ABSTRACT

Elaeagnus angustifolia was analyzed for determination of metals, phytoconstituents, bactericidal, fungicidal and insecticidal effects and to explore its chemical and biological potential. The root, branches, leaves, stem bark and root bark parts of E. angustifolia were found to contain iron, lead, copper, cadmium, zinc, chromium, nickel and cobalt in different concentrations. Crude extract of Elaeagnus angustifolia (Ea.Cr) was tested positive for the presence of alkaloids, flavonoids, saponins and tannins. Ea.Cr and its fractions, n-hexane (Ea.Hex), ethyl acetate (Ea.EtAc) and aqueous (Ea.Aq) showed bactericidal activity against Escherichia coli and Staphylococcus aureus, while against Pseudomonas aeruginosa only Ea.Hex and Ea.EtAc were effective. When tested for antifungal effect, Ea.Cr exhibited fungicidal action against Aspergillus fumagatus, Ea.EtAc and Ea.Aq against Aspergillus flavis and Ea.EtAc against Aspergillus niger. Ea.Hex was active against all three fungal strains. The chloroform fraction (Ea.CHCl3) was found inactive against the used microbes. Ea.Cr, Ea.Hex, Ea.CHCl3, Ea.EtAc and Ea.Aq caused mortality of Tribolium castaneum and Ephestia cautella insects observed after 24 and 48 h of treatment. These data indicate that E. angustifolia exhibits different heavy metals and compound groups. Methanolic extract of E. angustifolia and its various fractions possess antibacterial, antifungal and insecticidal activities, which elucidate medicinal application of the plant.


Subject(s)
Anti-Infective Agents/analysis , Elaeagnaceae/chemistry , Insecticides/analysis , Metals, Heavy/analysis , Phytochemicals/analysis , Animals , Flavonoids/analysis , Lepidoptera/drug effects , Pseudomonas aeruginosa/drug effects , Saponins/analysis , Staphylococcus aureus/drug effects , Tribolium/drug effects
17.
Int J Biol Macromol ; 257(Pt 1): 128586, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056753

ABSTRACT

Due to their antibacterial activity, chitosan­carbon dot composites possess great potential for pharmaceuticals, medicine, and food preservation. Conducting a comprehensive study of the interactions between chitosan, carbon dots, and bacteria is crucial to understanding the processes behind applying these composites. This study aimed to immobilize carbon dots (C-dots) synthesized from Elaeagnus angustifolia fruits on chitosan and glass microbeads' surfaces, to characterize the test materials obtained after synthesis and immobilization, and to investigate their antibacterial potentials. C-dot synthesis was carried out from water extract in an acidic medium with the help of microwave irradiation, and their structural and optical properties were characterized by TEM, XRD, FT-IR, UV-vis, Zeta potential, and fluorescence methods. The surface of the glass microbeads was first activated and functionalized with surface amine groups with a silaning agent. C-dots were immobilized on both glass and chitosan microbeads using a crosslinking agent. Antibacterial potentials of nine different test materials, obtained before or after immobilization, were evaluated both qualitatively (MIC and MBC) and quantitatively (GI50) on E. coli, S. typhimurium, B. subtilis, and S. aureus, with the standard broth microdilution method. FT-IR and SEM-EDX analyses showed that C-dots were immobilized on chitosan (˂1 mm) and glass (˂100 µm) microbead surfaces. C-dots reduced the cell viability by ~25 % on S. typhimurium and B. subtilis (MIC = 25 mg/mL). It was also found that the highest antibacterial effect was recorded for C-dots-glass microbeads, which had a toxic effect of 43 % on S. aureus. In addition, binding C-dots to glass microbeads increased the antibacterial effect selectively in Gram-positive bacteria, while binding to chitosan microbeads was effective in all bacteria. The study showed that the antibacterial potential of C-dots-chitosan microbeads is more effective than C-dots-glass microbeads. C-dots could be used as carbon-based nanomaterials in antibacterial surface preparation once immobilized.


Subject(s)
Carbon , Chitosan , Carbon/pharmacology , Escherichia coli , Chitosan/pharmacology , Chitosan/chemistry , Staphylococcus aureus , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
18.
Environ Entomol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235993

ABSTRACT

Anoplophora glabripennis (Motschulsky), the Asian longhorned beetle, is a serious wood-boring pest of hardwood trees. There have been records that suggest Elaeagnus angustifolia L. (Elaeagnaceae) might be an "attract and kill" tree species for A. glabripennis, i.e., a tree that is attractive to A. glabripennis adults but kills their oviposited eggs. To evaluate the possibility of E. angustifolia as a control measure for A. glabripennis, we carried out a series of behavioral experiments in the laboratory and in the field. Results showed that: (i) A. glabripennis females preferred E. angustifolia branches and leaves over poplar tree species evaluated; the weight of feces from both female and male A. glabripennis feeding on E. angustifolia was significantly higher than from those feeding on Populus deltoides 'Shalinyang' or Populus alba. L. var. pyramidalis; (ii) the average lifespan of females and males feeding on E. angustifolia was significantly longer than those feeding on other host trees evaluated; (iii) in the laboratory oviposition choice experiment, there were significantly fewer egg notch grooves on E. angustifolia than on P. deltoides 'Shalinyang', and those made in E. angustifolia were without eggs; (iv) in the field, the number of egg notch grooves on E. angustifolia was 43.6 ±â€…18.1 per stem, but the number of eggs laid was only 14.4 ±â€…6.4 per stem; and (v) Field surveys of existing mixed forests showed that when E. angustifolia was planted with P. alba. var. pyramidalis or Populus simonii × (Populus pyramidalis + Salix matsudana) 'Poparis' in the mixed forest, both poplar varieties suffered greater infestation than E. angustifolia. Therefore, E. angustifolia is not a suitable attract and kill tree to be extensively planted in mixed forests for control of A. glabripennis.

19.
Biomed Rep ; 20(3): 36, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343659

ABSTRACT

The use of plants for nanoparticle (NP) synthesis, grounded in green chemistry principles, is an environmentally friendly and economically viable approach. In the present study, the leaf extract of Elaeagnus angustifolia L. was used as a biosynthetic agent to generate bimetallic zinc oxide NPs. The present study investigated the effect of ZnO NPs on anti-angiogenesis and cell migration. Various bimetallic NPs, including zinc-iron oxide and nickel-zinc oxide, underwent characterization through Fourier-transform infrared spectroscopy and X-ray Diffraction within the 25-65˚ range. Confirmation of NP formation was determined by identifying the surface plasmon resonance peak. MTT assay was used to determine the cytotoxic properties of E. angustifolia L. extracts, ZnO NPs and associated metals in MCF-7 breast cancer cells. The plant extract demonstrated antiproliferative effects at 200 µg/ml, whereas E. ang-Fe2ZnO4 NPs showed varying cytotoxic effects based on concentration. The rat aortic ring and cell migration assays illuminated anti-angiogenic attributes, with the E. ang-Fe2ZnO4 NPs blocking blood vessel development entirely at 100 µg/ml, implying profound anti-angiogenic efficacy. Therefore, E. ang-Fe2ZnO4 NPs may serve a role in antiangiogenic therapy.

20.
BMC Res Notes ; 16(1): 364, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066640

ABSTRACT

AIM: The purpose of this study was to determine the impact of Elaeagnus Angustifolia extract (EA) on human dermal fibroblast (HDF) survival, migration, and wound healing-related genes. METHODS: After preparing the hydroalcoholic extract of EA, MTT and scratch tests were used to determine the effect of EA on the viability and migration of HDFs. In addition, the quantitative polymerase chain reaction (q-PCR) was conducted to evaluate the impact of EA on the expression of wound healing-related genes in HDFs. RESULT: According to the MTT test, a nontoxic concentration of EA (100 µg/ml) was obtained for further investigations. The scratch test results demonstrated that EA improved HDFs' capacity to migrate when compared to the control group. Additionally, q-PCR results revealed that EA could significantly increase wound healing-related genes (VEGF-A, HLA-G5, and IL-6) in comparison with the control group. CONCLUSIONS: The EA could have a significant impact on the viability and migration of HDFs. Also, EA increased the expression of wound healing-related genes.


Subject(s)
Elaeagnaceae , Wound Healing , Humans , Skin , Fibroblasts , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL