Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 172(1-2): 305-317.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328918

ABSTRACT

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Hyaluronan Receptors/metabolism , Receptors, Immunologic/metabolism , Adult , Animals , Binding Sites , COS Cells , Cells, Cultured , Chlorocebus aethiops , Female , Humans , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/genetics , Hyaluronic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding
2.
Annu Rev Cell Dev Biol ; 31: 593-621, 2015.
Article in English | MEDLINE | ID: mdl-26566117

ABSTRACT

Microvilli are actin-based structures found on the apical aspect of many epithelial cells. In this review, we discuss different types of microvilli, as well as comparisons with actin-based sensory stereocilia and filopodia. Much is known about the actin-bundling proteins of these structures; we summarize recent studies that focus on the components of the microvillar membrane. We pay special attention to mechanisms of membrane microfilament attachment by the ezrin/radixin/moesin family and regulation of this protein family. We also discuss the NHERF family of scaffolding proteins that are found in microvilli and their role in microvilli regulation. Microvilli on cultured cells are not static structures, and their dynamics and those of their components are discussed. Finally, we mention diseases related to microvilli and outline questions that our current knowledge will allow the field to address in the near future.


Subject(s)
Epithelial Cells/physiology , Microvilli/physiology , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology , Actins/metabolism , Animals , Humans , Membranes/metabolism , Membranes/physiology
3.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39077779

ABSTRACT

The Hippo pathway plays a crucial role in cell proliferation and differentiation during tumorigenesis, tissue homeostasis and early embryogenesis. Scaffold proteins from the ezrin-radixin-moesin (ERM) family, including neurofibromin 2 (NF2; Merlin), regulate the Hippo pathway through cell polarity. However, the mechanisms underlying Hippo pathway regulation via cell polarity in establishing outer cells remain unclear. In this study, we generated artificial Nf2 mutants in the N-terminal FERM domain (L64P) and examined Hippo pathway activity by assessing the subcellular localization of YAP1 in early embryos expressing these mutant mRNAs. The L64P-Nf2 mutant inhibited NF2 localization around the cell membrane, resulting in YAP1 cytoplasmic translocation in the polar cells. L64P-Nf2 expression also disrupted the apical centralization of both large tumor suppressor 2 (LATS2) and ezrin in the polar cells. Furthermore, Lats2 mutants in the FERM binding domain (L83K) inhibited YAP1 nuclear translocation. These findings demonstrate that NF2 subcellular localization mediates cell polarity establishment involving ezrin centralization. This study provides previously unreported insights into how the orchestration of the cell-surface components, including NF2, LATS2 and ezrin, modulates the Hippo pathway during cell polarization.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Polarity , Cytoskeletal Proteins , Hippo Signaling Pathway , Neurofibromin 2 , Protein Serine-Threonine Kinases , Tumor Suppressor Proteins , YAP-Signaling Proteins , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Animals , Mice , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Signal Transduction , Embryo, Mammalian/metabolism , Mutation/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Protein Transport , Cell Membrane/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics
4.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084960

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary , Molecular Docking Simulation , Nucleocapsid Proteins/metabolism , Pemetrexed/metabolism , Porcine epidemic diarrhea virus/physiology , Sodium/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Swine , Swine Diseases/drug therapy
5.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Article in English | MEDLINE | ID: mdl-37328063

ABSTRACT

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Cell Movement , Esophageal Neoplasms/metabolism , Proteomics
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35140182

ABSTRACT

Multiprotein assemblages are the intracellular workhorses of many physiological processes. Assembly of constituents into complexes can be driven by stochastic, domain-dependent, posttranslational events in which mature, folded proteins specifically interact. However, inaccessibility of interacting surfaces in mature proteins (e.g., due to "buried" domains) can obstruct complex formation. Mechanisms by which multiprotein complex constituents overcome topological impediments remain enigmatic. For example, the heterodimeric complex formed by EBP50 and ezrin must address this issue as the EBP50-interacting domain in ezrin is obstructed by a self-interaction that occupies the EBP50 binding site. Here, we show that the EBP50-ezrin complex is formed by a cotranslational mechanism in which the C terminus of mature, fully formed EBP50 binds the emerging, ribosome-bound N-terminal FERM domain of ezrin during EZR mRNA translation. Consistent with this observation, a C-terminal EBP50 peptide mimetic reduces the cotranslational interaction and abrogates EBP50-ezrin complex formation. Phosphorylation of EBP50 at Ser339 and Ser340 abrogates the cotranslational interaction and inhibits complex formation. In summary, we show that the function of eukaryotic mRNA translation extends beyond "simple" generation of a linear peptide chain that folds into a tertiary structure, potentially for subsequent complex assembly; importantly, translation can facilitate interactions with sterically inaccessible domains to form functional multiprotein complexes.


Subject(s)
Cytoskeletal Proteins/metabolism , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Binding Sites , CRISPR-Cas Systems , Cloning, Molecular , Cytoskeletal Proteins/genetics , DNA, Complementary , Gene Expression Regulation , Gene Silencing , HCT116 Cells , HEK293 Cells , Humans , Jurkat Cells , Models, Molecular , Phosphoproteins/genetics , Protein Binding , Protein Biosynthesis , Protein Conformation , Sodium-Hydrogen Exchangers/genetics
7.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039796

ABSTRACT

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Subject(s)
Cytokines , Cytoskeletal Proteins , Dermatitis, Atopic , Mice, Inbred BALB C , Mitochondrial Dynamics , Pentacyclic Triterpenes , Triterpenes , Animals , Mitochondrial Dynamics/drug effects , Pentacyclic Triterpenes/pharmacology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Humans , Triterpenes/pharmacology , Mice , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Thymic Stromal Lymphopoietin , Disease Models, Animal , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , HaCaT Cells , Phosphorylation/drug effects
8.
EMBO J ; 39(8): e102468, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32154600

ABSTRACT

Vertebrate vision relies on the daily phagocytosis and lysosomal degradation of photoreceptor outer segments (POS) within the retinal pigment epithelium (RPE). However, how these events are controlled by light is largely unknown. Here, we show that the light-responsive miR-211 controls lysosomal biogenesis at the beginning of light-dark transitions in the RPE by targeting Ezrin, a cytoskeleton-associated protein essential for the regulation of calcium homeostasis. miR-211-mediated down-regulation of Ezrin leads to Ca2+ influx resulting in the activation of calcineurin, which in turn activates TFEB, the master regulator of lysosomal biogenesis. Light-mediated induction of lysosomal biogenesis and function is impaired in the RPE from miR-211-/- mice that show severely compromised vision. Pharmacological restoration of lysosomal biogenesis through Ezrin inhibition rescued the miR-211-/- phenotype, pointing to a new therapeutic target to counteract retinal degeneration associated with lysosomal dysfunction.


Subject(s)
Calcium/metabolism , Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Lysosomes/metabolism , MicroRNAs/metabolism , Animals , Autophagy , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/genetics , Down-Regulation , Light , Lysosomes/ultrastructure , Mice , Mice, Knockout , MicroRNAs/genetics , Phagocytosis , Phagosomes/metabolism , Phagosomes/ultrastructure , Retinal Pigment Epithelium/metabolism
9.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33574063

ABSTRACT

To study the mechanisms controlling front-rear polarity in migrating cells, we used zebrafish primordial germ cells (PGCs) as an in vivo model. We find that polarity of bleb-driven migrating cells can be initiated at the cell front, as manifested by actin accumulation at the future leading edge and myosin-dependent retrograde actin flow toward the other side of the cell. In such cases, the definition of the cell front, from which bleb-inhibiting proteins such as Ezrin are depleted, precedes the establishment of the cell rear, where those proteins accumulate. Conversely, following cell division, the accumulation of Ezrin at the cleavage plane is the first sign for cell polarity and this aspect of the cell becomes the cell back. Together, the antagonistic interactions between the cell front and back lead to a robust polarization of the cell. Furthermore, we show that chemokine signaling can bias the establishment of the front-rear axis of the cell, thereby guiding the migrating cells toward sites of higher levels of the attractant. We compare these results to a theoretical model according to which a critical value of actin treadmilling flow can initiate a positive feedback loop that leads to the generation of the front-rear axis and to stable cell polarization. Together, our in vivo findings and the mathematical model, provide an explanation for the observed nonoriented migration of primordial germ cells in the absence of the guidance cue, as well as for the directed migration toward the region where the gonad develops.


Subject(s)
Actins/metabolism , Cell Movement , Cell Polarity , Chemokines/metabolism , Zebrafish Proteins/metabolism , Animals , Cytoskeletal Proteins/metabolism , Germ Cells/cytology , Germ Cells/metabolism , Protein Transport , Zebrafish
10.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062914

ABSTRACT

The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.


Subject(s)
Aquaporin 2 , Aquaporin 5 , Cytoskeletal Proteins , Protein Binding , Humans , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/chemistry , Aquaporin 5/metabolism , Aquaporin 5/chemistry , Aquaporin 2/metabolism , Aquaporin 2/chemistry , Binding Sites , Aquaporins/metabolism , Aquaporins/chemistry , Protein Domains , Models, Molecular , Microfilament Proteins/metabolism , Microfilament Proteins/chemistry , Membrane Proteins/metabolism , Membrane Proteins/chemistry
11.
Am J Physiol Endocrinol Metab ; 325(3): E214-E226, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37467022

ABSTRACT

Gastrointestinal (GI) complications, including diarrhea, constipation, and gastroparesis, are common in patients with diabetes. Dysregulation of the Na+/H+ exchanger NHE3 in the intestine is linked to diarrhea and constipation, and recent studies showed that NHE3 expression is reduced in type 1 diabetes and metformin causes diarrhea in the db/db mouse model of type 2 diabetes (T2D) via inhibition of NHE3. In this study, we investigated whether NHE3 expression is altered in type 2 diabetic intestine and the underlying mechanism that dysregulates NHE3. NHE3 expression in the brush border membrane (BBM) of the intestine of diabetic mice and humans was decreased. Protein kinase C (PKC) activation is associated with pathologies of diabetes, and immunofluorescence (IF) analysis revealed increased BBM PKCα abundance. Inhibition of PKCα increased NHE3 BBM abundance and NHE3-mediated intestinal fluid absorption in db/db mice. Previous studies have shown that Lactobacillus acidophilus (LA) stimulates intestinal ion transporters. LA increased NHE3 BBM expression and mitigated metformin-mediated inhibition of NHE3 in vitro and in vivo. To understand the underlying mechanism of LA-mediated stimulation of NHE3, we used Caco-2bbe cells overexpressing PKCα that mimic the elevated state of PKCα in T2D. LA diminished PKCα BBM expression, increased phosphorylation of ezrin, and the interaction of NHE3 with NHE regulatory factor 2 (NHERF2). In addition, inhibition of PKCι blocked phosphorylation of ezrin and activation of NHE3 by LA. These findings demonstrate that NHE3 is downregulated in T2D, and LA restores NHE3 expression via regulation of PKCα, PKCι, and ezrin.NEW & NOTEWORTHY We used mouse models of type 2 diabetes (T2D) and human patient-derived samples to show that Na+/H+ exchanger 3 (NHE3) expression is decreased in T2D. We show that protein kinase C-α (PKCα) is activated in diabetes and inhibition of PKCα increased NHE3 expression and mitigates diarrhea. We show that Lactobacillus acidophilus (LA) stimulates NHE3 via inhibition of PKCα and phosphorylation of ezrin.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Metformin , Animals , Humans , Mice , Constipation , Diarrhea/metabolism , Lactobacillus acidophilus/metabolism , Metformin/pharmacology , Protein Kinase C-alpha/metabolism , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/metabolism
12.
Cancer Sci ; 114(4): 1353-1364, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36522839

ABSTRACT

Multidrug resistance is a primary factor in the poor response to chemotherapy and subsequent death in gastric cancer patients. However, the molecular mechanisms involved remain unclear. In this study, the high expression of special AT-rich sequence binding protein 1 (SATB1) in gastric cancer was found to be associated with reduced sensitivity to various chemotherapy drugs. Our results demonstrate that SATB1 can promote chemotherapy resistance in gastric cancer in vitro and in vivo. SATB1 exerts its effect by enhancing the activity of multiple ATP-binding cassette (ABC) transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) in gastric cancer cell lines. We also found that SATB1 affects ABC transporters by altering the subcellular localization of the ABC transporter rather than its expression. Subsequently, we confirmed that Ezrin binds to various ABC transporters and affects their subcellular localization. In addition, we found that SATB1 can also bind to the Ezrin promoter and regulate its expression. In the present study, we elucidate the mechanism of SATB1-mediated multidrug resistance in gastric cancer, providing a basis for SATB1 as a potential target for reversal of resistance.


Subject(s)
Matrix Attachment Region Binding Proteins , Stomach Neoplasms , Humans , ATP-Binding Cassette Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Neoplasm Proteins/metabolism , Drug Resistance, Multiple/genetics , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/pharmacology
13.
J Cell Sci ; 134(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34528675

ABSTRACT

ATP11C, a member of the P4-ATPase family, translocates phosphatidylserine and phosphatidylethanolamine at the plasma membrane. We previously revealed that its C-terminal splice variant ATP11C-b exhibits polarized localization in motile cell lines, such as MDA-MB-231 and Ba/F3. In the present study, we found that the C-terminal cytoplasmic region of ATP11C-b interacts specifically with ezrin. Notably, the LLxY motif in the ATP11C-b C-terminal region is crucial for its interaction with ezrin as well as its polarized localization on the plasma membrane. A constitutively active, C-terminal phosphomimetic mutant of ezrin was colocalized with ATP11C-b in polarized motile cells. ATP11C-b was partially mislocalized in cells depleted of ezrin alone, and exhibited greater mislocalization in cells simultaneously depleted of the family members ezrin, radixin and moesin (ERM), suggesting that ERM proteins, particularly ezrin, contribute to the polarized localization of ATP11C-b. Furthermore, Atp11c knockout resulted in C-terminally phosphorylated ERM protein mislocalization, which was restored by exogenous expression of ATP11C-b but not ATP11C-a. These observations together indicate that the polarized localizations of ATP11C-b and the active form of ezrin to the plasma membrane are interdependently stabilized.


Subject(s)
Adenosine Triphosphatases , Cell Polarity , Cell Membrane , Cytoplasm , Cytoskeletal Proteins , Phosphoproteins
14.
J Cell Sci ; 134(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33712451

ABSTRACT

Ezrin, radixin and moesin compose the family of ERM proteins. They link actin filaments and microtubules to the plasma membrane to control signaling and cell morphogenesis. Importantly, their activity promotes invasive properties of metastatic cells from different cancer origins. Therefore, a precise understanding of how these proteins are regulated is important for the understanding of the mechanism controlling cell shape, as well as providing new opportunities for the development of innovative cancer therapies. Here, we developed and characterized novel bioluminescence resonance energy transfer (BRET)-based conformational biosensors, compatible with high-throughput screening, that monitor individual ezrin, radixin or moesin activation in living cells. We showed that these biosensors faithfully monitor ERM activation and can be used to quantify the impact of small molecules, mutation of regulatory amino acids or depletion of upstream regulators on their activity. The use of these biosensors allowed us to characterize the activation process of ERMs that involves a pool of closed-inactive ERMs stably associated with the plasma membrane. Upon stimulation, we discovered that this pool serves as a cortical reserve that is rapidly activated before the recruitment of cytoplasmic ERMs.


Subject(s)
Biosensing Techniques , Cytoskeletal Proteins , Energy Transfer , Membrane Proteins , Microfilament Proteins
15.
Development ; 147(14)2020 07 22.
Article in English | MEDLINE | ID: mdl-32586975

ABSTRACT

ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.


Subject(s)
Actins/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cytoskeletal Proteins/metabolism , Actin Cytoskeleton , Amino Acid Sequence , Animals , Binding Sites , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Humans , Intestinal Mucosa/metabolism , Larva/growth & development , Larva/metabolism , Mutagenesis, Site-Directed , Phosphorylation , Protein Binding , Protein Domains , Sequence Alignment
16.
J Transl Med ; 21(1): 173, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36870952

ABSTRACT

BACKGROUND: Clinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells. METHOD: A gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation. RESULTS: For the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iß levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion. CONCLUSIONS: The spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.


Subject(s)
Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Humans , Muscular Atrophy , Cell Differentiation , Muscle Fibers, Skeletal
17.
Exp Physiol ; 108(5): 740-751, 2023 05.
Article in English | MEDLINE | ID: mdl-36156321

ABSTRACT

NEW FINDINGS: What is the central question of this study? To reveal the role and biological mechanism of PDPN in the progression of gastric cancer. What is the main finding and its importance? This study focused on a prognostic predictor, PDPN, which acted as a promoter in the progression of gastric cancer through the activation of Ezrin expression and CAFs. This finding may expand a new route for the gene-targeted therapy in gastric cancer. ABSTRACT: Gastric cancer (GC) is a frequent malignant disease and the main cause of cancer-related death in the world. Podoplanin (PDPN) has been proved to be involved in the progression of various cancers. However, the role and biological mechanism of PDPN in GC are still vague. In our study, we detected the expression of PDPN in GC tissues and cell lines using RT-qPCR, western blot and datasets. The overall survival of GC patients was analysed with a Kaplan-Meier plot. The effects of PDPN overexpression and silencing on GC cell progression were assessed by Cell Counting Kit-8, flow cytometry and a wound healing assay. Besides, the modulation of PDPN on ezrin activation was investigated. We further explored the role of PDPN in the crosstalk between GC cells and cancer associated fibroblasts (CAFs). Results showed that PDPN was upregulated in GC tissues and cell lines. High expression of PDPN was correlated with poor prognosis of GC patients. PDPN positively regulated the viability, migration and invasion, but inhibited apoptosis, of GC cells by mediating the activation of ezrin. Meanwhile, the change in PDPN in GC cells activated CAFs and promoted the production of cytokines secreted by CAFs, which induced the progression of GC cells. These findings may provide a novel target for GC therapy.


Subject(s)
Cancer-Associated Fibroblasts , Stomach Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Stomach Neoplasms/metabolism , Membrane Glycoproteins , Cytoskeletal Proteins/metabolism , Cell Movement , Cell Line, Tumor , Fibroblasts/metabolism
18.
Biol Cell ; 114(9): 237-253, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35851960

ABSTRACT

Ezrin protein is involved in the interaction of actin cytoskeleton with membrane receptors such as CD44. It regulates plasma membrane dynamics and intracellular signaling. Coxiella burnetii, the etiologic agent of Q fever, is internalized into host cell through a poorly characterized molecular mechanism. Here we analyzed the role of ezrin and CD44 in the C. burnetii internalization by HeLa cells. The knockdown of ezrin and CD44 inhibited the bacterial uptake. Interestingly, at early stages of C. burnetii internalization, ezrin was recruited to the cell membrane fraction and phosphorylated. Moreover, the overexpression of non-phosphorylatable and phosphomimetic ezrin mutants decreased and increased the bacterial entry, respectively. A decrease in the internalization of C. burnetii was observed by the overexpression of CD44 truncated forms containing the intracellular or the extracellular domains. Interestingly, the CD44 mutant was unable to interact with ERM proteins decreased the bacterial internalization. These findings demonstrate the participation of ezrin in the internalization process of C. burnetii in non-phagocytic cells. Additionally, we present evidence that CD44 receptor would be involved in that process.


Subject(s)
Coxiella burnetii , Cytoskeletal Proteins/metabolism , Hyaluronan Receptors/metabolism , Actin Cytoskeleton , Coxiella burnetii/metabolism , HeLa Cells , Humans
19.
J Am Soc Nephrol ; 33(11): 2008-2025, 2022 11.
Article in English | MEDLINE | ID: mdl-35985815

ABSTRACT

BACKGROUND: The cause of podocyte injury in idiopathic nephrotic syndrome (INS) remains unknown. Although recent evidence points to the role of B cells and autoimmunity, the lack of animal models mediated by autoimmunity limits further research. We aimed to establish a mouse model mimicking human INS by immunizing mice with Crb2, a transmembrane protein expressed at the podocyte foot process. METHODS: C3H/HeN mice were immunized with the recombinant extracellular domain of mouse Crb2. Serum anti-Crb2 antibody, urine protein-to-creatinine ratio, and kidney histology were studied. For signaling studies, a Crb2-expressing mouse podocyte line was incubated with anti-Crb2 antibody. RESULTS: Serum anti-Crb2 autoantibodies and significant proteinuria were detected 4 weeks after the first immunization. The proteinuria reached nephrotic range at 9-13 weeks and persisted up to 29 weeks. Initial kidney histology resembled minimal change disease in humans, and immunofluorescence staining showed delicate punctate IgG staining in the glomerulus, which colocalized with Crb2 at the podocyte foot process. A subset of mice developed features resembling FSGS after 18 weeks. In glomeruli of immunized mice and in Crb2-expressing podocytes incubated with anti-Crb2 antibody, phosphorylation of ezrin, which connects Crb2 to the cytoskeleton, increased, accompanied by altered Crb2 localization and actin distribution. CONCLUSION: The results highlight the causative role of anti-Crb2 autoantibody in podocyte injury in mice. Crb2 immunization could be a useful model to study the immunologic pathogenesis of human INS, and may support the role of autoimmunity against podocyte proteins in INS.


Subject(s)
Nephrosis, Lipoid , Nephrotic Syndrome , Podocytes , Mice , Humans , Animals , Podocytes/metabolism , Nephrotic Syndrome/metabolism , Nephrosis, Lipoid/pathology , Mice, Inbred C3H , Proteinuria/metabolism , Disease Models, Animal , Immunization , Carrier Proteins/metabolism , Membrane Proteins/metabolism
20.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629086

ABSTRACT

Despite the advancements in targeted therapy for BRAFV600E-mutated metastatic colorectal cancer (mCRC), the development of resistance to BRAFV600E inhibition limits the response rate and durability of the treatment. Better understanding of the resistance mechanisms to BRAF inhibitors will facilitate the design of novel pharmacological strategies for BRAF-mutated mCRC. The aim of this study was to identify novel protein candidates involved in acquired resistance to BRAFV600E inhibitor vemurafenib in BRAFV600E-mutated colon cancer cells using an integrated proteomics approach. Bioinformatic analysis of obtained proteomics data indicated actin-cytoskeleton linker protein ezrin as a highly ranked protein significantly associated with vemurafenib resistance whose overexpression in the resistant cells was additionally confirmed at the gene and protein level. Ezrin inhibition by NSC305787 increased anti-proliferative and pro-apoptotic effects of vemurafenib in the resistant cells in an additive manner, which was accompanied by downregulation of CD44 expression and inhibition of AKT/c-Myc activities. We also detected an increased ezrin expression in vemurafenib-resistant melanoma cells harbouring the BRAFV600E mutation. Importantly, ezrin inhibition potentiated anti-proliferative and pro-apoptotic effects of vemurafenib in the resistant melanoma cells in a synergistic manner. Altogether, our study suggests a role of ezrin in acquired resistance to vemurafenib in colon cancer and melanoma cells carrying the BRAFV600E mutation and supports further pre-clinical and clinical studies to explore the benefits of combined BRAF inhibitors and actin-targeting drugs as a potential therapeutic approach for BRAFV600E-mutated cancers.


Subject(s)
Colonic Neoplasms , Melanoma , Humans , Vemurafenib/pharmacology , Actins , Proto-Oncogene Proteins B-raf/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Microfilament Proteins , Protein Kinase Inhibitors , Melanoma/drug therapy , Melanoma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL