Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(18): 3390-3407.e18, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055200

ABSTRACT

Chemical synapses between axons and dendrites mediate neuronal intercellular communication. Here, we describe a synapse between axons and primary cilia: the axo-ciliary synapse. Using enhanced focused ion beam-scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between brainstem serotonergic axons and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, the 5-hydroxytryptamine receptor 6 (5-HTR6). Using a cilia-targeted serotonin sensor, we show that opto- and chemogenetic stimulation of serotonergic axons releases serotonin onto cilia. Ciliary 5-HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway, which modulates nuclear actin and increases histone acetylation and chromatin accessibility. Ablation of this pathway reduces chromatin accessibility in CA1 pyramidal neurons. As a signaling apparatus with proximity to the nucleus, axo-ciliary synapses short circuit neurotransmission to alter the postsynaptic neuron's epigenetic state.


Subject(s)
Axons/physiology , Chromatin/chemistry , Cilia , Synapses , Cell Nucleus/metabolism , Chromatin/metabolism , Cilia/metabolism , Hippocampus/cytology , Hippocampus/physiology , Serotonin/metabolism , Signal Transduction , Synapses/physiology
2.
Annu Rev Cell Dev Biol ; 35: 637-653, 2019 10 06.
Article in English | MEDLINE | ID: mdl-31283380

ABSTRACT

The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In Drosophila, two major advances are in electron microscopic technology, using focused ion beam-scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.


Subject(s)
Drosophila/physiology , Neurons/cytology , Animals , Behavior, Animal/physiology , Brain/cytology , Brain/physiology , Computational Biology , Drosophila/cytology , Drosophila/genetics , Gene Expression , Genes, Reporter , Microscopy, Electron, Scanning/methods , Microscopy, Fluorescence , Neuroanatomy , Neurons/metabolism , Neurons/ultrastructure , Synapses/physiology , Synapses/ultrastructure
3.
Mol Cell ; 81(9): 2013-2030.e9, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33773106

ABSTRACT

The sequestration of damaged mitochondria within double-membrane structures termed autophagosomes is a key step of PINK1/Parkin mitophagy. The ATG4 family of proteases are thought to regulate autophagosome formation exclusively by processing the ubiquitin-like ATG8 family (LC3/GABARAPs). We discover that human ATG4s promote autophagosome formation independently of their protease activity and of ATG8 family processing. ATG4 proximity networks reveal a role for ATG4s and their proximity partners, including the immune-disease protein LRBA, in ATG9A vesicle trafficking to mitochondria. Artificial intelligence-directed 3D electron microscopy of phagophores shows that ATG4s promote phagophore-ER contacts during the lipid-transfer phase of autophagosome formation. We also show that ATG8 removal during autophagosome maturation does not depend on ATG4 activity. Instead, ATG4s can disassemble ATG8-protein conjugates, revealing a role for ATG4s as deubiquitinating-like enzymes. These findings establish non-canonical roles of the ATG4 family beyond the ATG8 lipidation axis and provide an AI-driven framework for rapid 3D electron microscopy.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Cysteine Endopeptidases/metabolism , Lipid Metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/genetics , Artificial Intelligence , Autophagosomes/genetics , Autophagosomes/ultrastructure , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/genetics , Cysteine Endopeptidases/genetics , HEK293 Cells , HeLa Cells , Humans , Imaging, Three-Dimensional , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/genetics , Mitochondria/genetics , Mitochondria/ultrastructure , Mitophagy , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Transport , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
4.
J Cell Sci ; 137(20)2024 10 15.
Article in English | MEDLINE | ID: mdl-38962997

ABSTRACT

Lipid droplets (LDs) are organelles that are central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and three-dimensional (3D) focused ion beam-scanning electron microscopy (FIB-SEM), we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or breakdown revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.


Subject(s)
Erythrocytes , Lipid Droplets , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/metabolism , Lipid Droplets/metabolism , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , Erythrocytes/parasitology , Erythrocytes/metabolism , Lipid Metabolism , Triglycerides/metabolism
5.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39106175

ABSTRACT

Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.


Subject(s)
Cerebral Cortex , Synapses , Volume Electron Microscopy , Adult , Aged , Female , Humans , Male , Middle Aged , Cerebral Cortex/ultrastructure , Dendritic Spines/ultrastructure , Imaging, Three-Dimensional/methods , Synapses/ultrastructure
6.
Genes Dev ; 31(2): 154-171, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28174210

ABSTRACT

We hypothesized that basic helix-loop-helix (bHLH) MIST1 (BHLHA15) is a "scaling factor" that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural "blueprints."


Subject(s)
Gene Expression Regulation/genetics , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Parietal Cells, Gastric/cytology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Secretory Pathway/genetics , Acinar Cells/cytology , Acinar Cells/drug effects , Acinar Cells/metabolism , Animals , Antineoplastic Agents, Hormonal/pharmacology , Cell Line , Ectopic Gene Expression/drug effects , Gene Deletion , Gene Expression Regulation/drug effects , Mice , Parietal Cells, Gastric/drug effects , Parietal Cells, Gastric/metabolism , Parietal Cells, Gastric/ultrastructure , Tamoxifen/pharmacology
7.
J Struct Biol ; 216(2): 108088, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531503

ABSTRACT

Melanin granules (melanosomes) in Asian and Caucasian black hairs were investigated by focused ion beam scanning electron microscopy (FIB-SEM). This technique facilitates a direct evaluation of the three-dimensional distribution and morphology of melanin granules without requiring their isolation from hair. Three-dimensional reconstructed images of melanin granule distribution in hair samples were obtained using serial SEM images observed by FIB-SEM. Melanin granules in black hair tended to be three-dimensionally dense in the outer periphery of the cortex. The morphometric parameters of melanin granules were calculated using the reconstructed three-dimensional images. The results confirmed that melanin granules in Caucasian black hair were much smaller those in Asian black hair. Moreover, it was indicated that the relative frequency distribution of the volume of melanin granules was significantly different between Asians and Caucasians.


Subject(s)
Asian People , Hair , Melanins , Microscopy, Electron, Scanning , White People , Microscopy, Electron, Scanning/methods , Humans , Melanins/metabolism , Hair/ultrastructure , Hair/chemistry , Melanosomes/ultrastructure , Melanosomes/metabolism , Volume Electron Microscopy
8.
J Struct Biol ; 216(1): 108062, 2024 03.
Article in English | MEDLINE | ID: mdl-38224900

ABSTRACT

The palette of mineralized tissues in fish is wide, and this is particularly apparent in fish dentin. While the teeth of all vertebrates except fish contain a single dentinal tissue type, called orthodentin, dentin in the teeth of fish can be one of several different tissue types. The most common dentin type in fish is orthodentin. Orthodentin is characterized by several key structural features that are fundamentally different from those of bone and from those of osteodentin. Osteodentin, the second-most common dentin type in fish (based on the tiny fraction of fish species out of ∼30,000 extant fish species in which tooth structure was so far studied), is found in most Selachians (sharks and rays) as well as in several teleost species, and is structurally different from orthodentin. Here we examine the hypothesis that osteodentin is similar to anosteocytic bone tissue in terms of its micro- and nano-structure. We use Focused Ion Beam-Scanning Electron Microscopy (FIB/SEM), as well as several other high-resolution imaging techniques, to characterize the 3D architecture of the three main components of osteodentin (denteons, inter-denteonal matrix, and the transition zone between them). We show that the matrix of osteodentin, although acellular, is extremely similar to mammalian osteonal bone matrix, both in general morphology and in the three-dimensional nano-arrangement of its mineralized collagen fibrils. We also document the presence of a complex network of nano-channels, similar to such networks recently described in bone. Finally, we document the presence of strings of hyper-mineralized small 'pearls' which surround the denteonal canals, and characterize their structure.


Subject(s)
Tooth , Wolves , Animals , Bone and Bones , Fishes , Dentin , Microscopy, Electron, Scanning
9.
J Struct Biol ; 216(2): 108096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697586

ABSTRACT

The bone extracellular matrix consists of a highly organized collagen matrix that is mineralized with carbonated hydroxyapatite. Even though the structure and composition of bone have been studied extensively, the mechanisms underlying collagen matrix organization remain elusive. In this study, we used a 3D cell culture system in which osteogenic cells deposit and orient the collagen matrix that is subsequently mineralized. Using live fluorescence imaging combined with volume electron microscopy, we visualize the organization of the cells and collagen in the cell culture. We show that the osteogenically induced cells are organizing the collagen matrix during development. Based on the observation of tunnel-like structures surrounded by aligned collagen in the center of the culture, we propose that osteoblasts organize the deposited collagen during migration through the culture. Overall, we show that cell-matrix interactions are involved in collagen alignment during early-stage osteogenic differentiation and that the matrix is organized by the osteoblasts in the absence of osteoclast activity.


Subject(s)
Cell Differentiation , Collagen , Extracellular Matrix , Osteoblasts , Osteogenesis , Extracellular Matrix/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Collagen/metabolism , Osteogenesis/physiology , Animals , Cell Culture Techniques, Three Dimensional/methods , Mice , Osteoclasts/metabolism , Osteoclasts/cytology
10.
Mol Plant Microbe Interact ; : MPMI04240045R, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38949504

ABSTRACT

Hemibiotrophic fungi in the genus Colletotrichum employ a biotrophic phase to invade host epidermal cells followed by a necrotrophic phase to spread through neighboring mesophyll and epidermal cells. We used serial block face-scanning electron microscopy (SBF-SEM) to compare subcellular changes that occur in Medicago sativa (alfalfa) cotyledons during infection by Colletotrichum destructivum (compatible on M. sativa) and C. higginsianum (incompatible on M. sativa). Three-dimensional reconstruction of serial images revealed that alfalfa epidermal cells infected with C. destructivum undergo massive cytological changes during the first 60 h following inoculation to accommodate extensive intracellular hyphal growth. Conversely, inoculation with the incompatible species C. higginsianum resulted in no successful penetration events and frequent formation of papilla-like structures and cytoplasmic aggregates beneath attempted fungal penetration sites. Further analysis of the incompatible interaction using focused ion beam-scanning electron microscopy (FIB-SEM) revealed the formation of large multivesicular body-like structures that appeared spherical and were not visible in compatible interactions. These structures often fused with the host plasma membrane, giving rise to paramural bodies that appeared to be releasing extracellular vesicles (EVs). Isolation of EVs from the apoplastic space of alfalfa leaves at 60 h postinoculation showed significantly more vesicles secreted from alfalfa infected with incompatible fungus compared with compatible fungus, which in turn was more than produced by noninfected plants. Thus, the increased frequency of paramural bodies during incompatible interactions correlated with an increase in EV quantity in apoplastic wash fluids. Together, these results suggest that EVs and paramural bodies contribute to immunity during pathogen attack in alfalfa. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

11.
Cereb Cortex ; 33(17): 9691-9708, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37455478

ABSTRACT

The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.


Subject(s)
Gyrus Cinguli , Synapses , Humans , Temporal Lobe , Brain
12.
Microsc Microanal ; 30(1): 96-102, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38321738

ABSTRACT

Traditional image acquisition for cryo focused ion-beam scanning electron microscopy (FIB-SEM) tomography often sees thousands of images being captured over a period of many hours, with immense data sets being produced. When imaging beam sensitive materials, these images are often compromised by additional constraints related to beam damage and the devitrification of the material during imaging, which renders data acquisition both costly and unreliable. Subsampling and inpainting are proposed as solutions for both of these aspects, allowing fast and low-dose imaging to take place in the Focused ion-beam scanning electron microscopy FIB-SEM without an appreciable loss in image quality. In this work, experimental data are presented which validate subsampling and inpainting as a useful tool for convenient and reliable data acquisition in a FIB-SEM, with new methods of handling three-dimensional data being employed in the context of dictionary learning and inpainting algorithms using a newly developed microscope control software and data recovery algorithm.

13.
Microsc Microanal ; 30(1): 41-48, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38321710

ABSTRACT

A novel method for the preparation of lamellas made from porous and brittle compressed green powder using a focused ion beam (FIB) is described. One of the main purposes for the development of this methodology is to use this type of samples in micro-electromechanical systems (MEMS) chips for in situ transmission electron microscopy heating/biasing experiments, concomitant with maintaining the mechanical integrity and the absence of contamination of samples. This is accomplished through a modification of the standard FIB procedure for the preparation of lamellas, the adaptation of conventional chips, as well as the specific transfer of the lamella onto the chips. This method is versatile enough to be implemented in most commercially available FIB systems and MEMS chips.

14.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612936

ABSTRACT

Male infertility is a significant factor in approximately half of all infertility cases and is marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a decreased production of sperm but also decreased numbers successfully passing through the male reproductive tract. Smooth muscle movement may play an important role in sperm transport in the male reproductive tract; thus, understanding the mechanism of this movement is necessary to elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review summarizes the findings to date on PICs in male reproductive organs. Further exploration of the structural, functional, and molecular characteristics of PICs could provide valuable insights into the pathogenesis of male infertility and potentially lead to new therapeutic approaches.


Subject(s)
Infertility, Male , Semen , Male , Humans , Spermatozoa , Genitalia , Receptors, Platelet-Derived Growth Factor
15.
Q Rev Biophys ; 54: e9, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34165063

ABSTRACT

The application of cryo-correlative light and cryo-electron microscopy (cryo-CLEM) gives us a way to locate structures of interest in the electron microscope. In brief, the structures of interest are fluorescently tagged, and images from the cryo-fluorescent microscope (cryo-FM) maps are superimposed on those from the cryo-electron microscope (cryo-EM). By enhancing cryo-FM to include single-molecule localization microscopy (SMLM), we can achieve much better localization. The introduction of cryo-SMLM increased the yield of photons from fluorophores, which can benefit localization efforts. Dahlberg and Moerner (2021, Annual Review of Physical Chemistry, 72, 253-278) have a recent broad and elegant review of super-resolution cryo-CLEM. This paper focuses on cryo(F)PALM/STORM for the cryo-electron tomography community. I explore the current challenges to increase the accuracy of localization by SMLM and the mapping of those positions onto cryo-EM images and maps. There is much to consider: we need to know if the excitation of fluorophores damages the structures we seek to visualize. We need to determine if higher numerical aperture (NA) objectives, which add complexity to image analysis but increase resolution and the efficiency of photon collection, are better than lower NA objectives, which pose fewer problems. We need to figure out the best way to determine the axial position of fluorophores. We need to have better ways of aligning maps determined by FM with those determined by EM. We need to improve the instrumentation to be easier to use, more accurate, and ice-contamination free. The bottom line is that we have more work to do.


Subject(s)
Electron Microscope Tomography , Single Molecule Imaging , Cryoelectron Microscopy , Fluorescent Dyes , Microscopy, Fluorescence
16.
J Struct Biol ; 215(4): 108045, 2023 12.
Article in English | MEDLINE | ID: mdl-37977509

ABSTRACT

Scales are structures composed of mineralized collagen fibrils embedded in the skin of fish. Here we investigate structures contributing to the bulk of the scale material of the sturgeon (Acipencer guldenstatii) at the millimeter, micrometer and nanometer length scales. Polished and fracture surfaces were prepared in each of the three anatomic planes for imaging with light and electron microscopy, as well as focused ion beam - scanning electron microscopy (FIB-SEM). The scale is composed of three layers, upper and lower layers forming the bulk of the scale, as well as a thin surface layer. FTIR shows that the scale is composed mainly of collagen and carbonated hydroxyapatite. Lacunae are present throughout the structure. Fracture surfaces of all three layers are characterized by large diameter collagen fibril bundles (CFBs) emanating from a plane comprising smaller diameter CFBs orientated in different directions. Fine lineations seen in polished surfaces of both major layers are used to define planes called here the striation planes. FIB-SEM image stacks of the upper and lower layers acquired in planes aligned with the striation planes, show that CFBs are oriented in various directions within the striation plane, with larger CFBs emanating from the striation plane. Fibril bundles oriented in different directions in the same plane is reminiscent of a similar organization in orthodentin. The large collagen fibril bundles emanating out of this plane are analogous to von Korff fibrils found in developing dentin with respect to size and orientation. Scales of the sturgeon are unusual in that their mineralized collagen fibril organization contains structural elements of both dentin and bone. The sturgeon scale may be an example of an early evolved mineralized material which is neither bone nor dentin but contains characteristics of both materials, however, the fossil data required to confirm this is missing.


Subject(s)
Collagen , Volume Electron Microscopy , Animals , Microscopy, Electron , Bone and Bones , Dentin , Microscopy, Electron, Scanning
17.
J Struct Biol ; 215(3): 107998, 2023 09.
Article in English | MEDLINE | ID: mdl-37422275

ABSTRACT

We report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD). We therefore could not use D-banding to decipher the 3D structure of the collagen assembly. Instead we exploited the anisotropy option in the Dragonfly image processing software to visualize the less mineralized collagen fibrils and/or nanopores that surround the more mineralized zones known as tesselles. This approach therefore indirectly tracks the orientations of the collagen fibrils in the matrix itself. We show that the HMD bone has a structure similar to that of woven bone, and the LMD is composed of lamellar bone with a plywood-like structural motif. This agrees with the fact that the bone close to the otic chamber is fetal bone and is not remodeled. The lamellar structure of the bone further away from the otic chamber is consistent with modeling/remodeling. The absence of the less mineralized collagen fibrils and nanopores resulting from the confluence of the mineral tesselles may contribute to shielding DNA during diagenesis. We show that anisotropy evaluation of the less mineralized collagen fibrils could be a useful tool to analyze bone ultrastructures and in particular the directionality of collagen fibril bundles that make up the bone matrix.


Subject(s)
DNA, Ancient , Odonata , Animals , Swine , Petrous Bone , Collagen , Minerals
18.
Glia ; 71(3): 509-523, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36354016

ABSTRACT

Healthy myelin sheaths consist of multiple compacted membrane layers closely encasing the underlying axon. The ultrastructure of CNS myelin requires specialized structural myelin proteins, including the transmembrane-tetraspan proteolipid protein (PLP) and the Ig-CAM myelin-associated glycoprotein (MAG). To better understand their functional relevance, we asked to what extent the axon/myelin-units display similar morphological changes if PLP or MAG are lacking. We thus used focused ion beam-scanning electron microscopy (FIB-SEM) to re-investigate axon/myelin-units side-by-side in Plp- and Mag-null mutant mice. By three-dimensional reconstruction and morphometric analyses, pathological myelin outfoldings extend up to 10 µm longitudinally along myelinated axons in both models. More than half of all assessed outfoldings emerge from internodal myelin. Unexpectedly, three-dimensional reconstructions demonstrated that both models displayed complex axonal pathology underneath the myelin outfoldings, including axonal sprouting. Axonal anastomosing was additionally observed in Plp-null mutant mice. Importantly, normal-appearing axon/myelin-units displayed significantly increased axonal diameters in both models according to quantitative assessment of electron micrographs. These results imply that healthy CNS myelin sheaths facilitate normal axonal diameters and shape, a function that is impaired when structural myelin proteins PLP or MAG are lacking.


Subject(s)
Central Nervous System , Myelin Proteolipid Protein , Myelin Sheath , Myelin-Associated Glycoprotein , Animals , Mice , Axons/metabolism , Central Nervous System/metabolism , Mice, Knockout , Microscopy, Electron, Scanning , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Myelin-Associated Glycoprotein/genetics , Myelin Proteolipid Protein/genetics
19.
J Cell Sci ; 134(5)2021 02 11.
Article in English | MEDLINE | ID: mdl-33380490

ABSTRACT

Borrelia burgdorferi is the causative agent of Lyme disease, a multisystemic disorder affecting primarily skin, joints and nervous system. Successful internalization and intracellular processing of borreliae by immune cells, like macrophages, is decisive for the outcome of a respective infection. Here, we use, for the first time, focused ion beam scanning electron microscopy tomography (FIB-SEM tomography) to visualize the interaction of borreliae with primary human macrophages with high resolution. We report that interaction between macrophages and the elongated and highly motile borreliae can lead to formation of membrane tunnels that extend deeper into the host cytoplasm than the actual phagosome, most probably as a result of partial extrication of captured borreliae. We also show that membrane tubulation at borreliae-containing phagosomes, a process suggested earlier as a mechanism leading to phagosome compaction but hard to visualize in live-cell imaging, is apparently a frequent phenomenon. Finally, we demonstrate that the endoplasmic reticulum (ER) forms multiple STIM1-positive contact sites with both membrane tunnels and phagosome tubulations, confirming the important role of the ER during uptake and intracellular processing of borreliae.


Subject(s)
Borrelia burgdorferi , Borrelia , Lyme Disease , Humans , Macrophages , Phagosomes
20.
Adv Appl Microbiol ; 122: 1-25, 2023.
Article in English | MEDLINE | ID: mdl-37085191

ABSTRACT

For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.


Subject(s)
Bacteria , Organelles , Bacteria/genetics , Macromolecular Substances/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL